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EDITORS'  PREFACE. 

Our  attention  was  first  attracted  to  Sundara  Row's  Geomet- 

rical Exercises  in  Paper  Folding  by  a  reference  in  Klein's  Vor- 

lesungen  iiber  ausgezvahlte  Fragen  der  Elemental- geometric. 

An  examination  of  the  book,  obtained  after  many  vexatious  delays, 

convinced  us  of  its  undoubted  merits  and  of  its  probable  value  to 

American  teachers  and  students  of  geometry.  Accordingly  we 

sought  permission  of  the  author  to  bring  out  an  edition  in  this 

country,  which  permission  was  most  generously  granted. 

The  purpose  of  the  book  is  so  fully  set  forth  in  the  author's 

introduction  that  we  need  only  to  say  that  it  is  sure  to  prove  of 

interest  to  every  wide-awake  teacher  of  geometry  from  the  graded 

school  to  the  college.  The  methods  are  so  novel  and  the  results 

so  easily  reached  that  they  cannot  fail  to  awaken  enthusiasm. 

Our  work  as  editors  in  this  revision  has  been  confined  to  some 

slight  modifications  of  the  proofs,  some  additions  in  the  way  of 

references,  and  the  insertion  of  a  considerable  number  of  half-tone 

reproductions  of  actual  photographs  instead  of  the  line-drawings 

of  the  original. 

W.  W.  Beman. 

D.  E.  Smith. 
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INTRODUCTION. 

The  idea  of  this  book  was  suggested  to  me  by 

Kindergarten  Gift  No.  VIII. — Paper-folding.  The 

gift  consists  of  two  hundred  variously  colored  squares 

of  paper,  a  folder,  and  diagrams  and  instructions  for 

folding.  The  paper  is  colored  and  glazed  on  one  side. 

The  paper  may,  however,  be  of  self-color,  alike  on 

both  sides.  In  fact,  any  paper  of  moderate  thickness 

will  answer  the  purpose,  but  colored  paper  shows  the 

creases  better,  and  is  more  attractive.  The  kinder- 

garten gift  is  sold  by  any  dealers  in  school  supplies  ; 

but  colored  paper  of  both  sorts  can  be  had  from  sta- 

tionery dealers.  Any  sheet  of  paper  can  be  cut  into 

a  square  as  explained  in  the  opening  articles  of  this 

book,  but  it  is  neat  and  convenient  to  have  the  squares 

ready  cut. 

2.  These  exercises  do  not  require  mathematical 

instruments,  the  only  things  necessary  being  a  pen- 

knife and  scraps  of  paper,  the  latter  being  used  for 

setting  off  equal  lengths.  The  squares  are  themselves 

simple  substitutes  for  a  straight  edge  and  a  T  square. 

3.  In  paper-folding  several  important  geometric 

processes  can  be  effected  much  more  easily  than  with 
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a  pair  of  compasses  and  ruler,  the  only  instruments 
the  use  of  which  is  sanctioned  in  Euclidean  geom- 

etry; for  example,  to  divide  straight  lines  and  angles 
into  two  or  more  equal  parts,  to  draw  perpendiculars 
and  parallels  to  straight  lines.  It  is,  however,  not 

possible  in  paper-folding  to  describe  a  circle,  but  a 
number  of  points  on  a  circle,  as  well  as  other  curves, 
may  be  obtained  by  other  methods.  These  exercises 

do  not  consist  merely  of  drawing  geometric  figures 
involving  straight  lines  in  the  ordinary  way,  and  fold- 

ing upon  them,  but  they  require  an  intelligent  appli- 
cation of  the  simple  processes  peculiarly  adapted  to 

paper-folding.  This  will  be  apparent  at  the  very  com- 
mencement of  this  book. 

4.  The  use  of  the  kindergarten  gifts  not  only  affords 
interesting  occupations  to  boys  and  girls,  but  also 
prepares  their  minds  for  the  appreciation  of  science 

and  art.  Conversely  the  teaching  of  science  and  art 

later  on  can  be  made  interesting  and  based  upon 

proper  foundations  by  reference  to  kindergarten  occu- 

pations. This  is  particularly  the  case  with  geometry, 
which  forms  the  basis  of  every  science  and  art.  The 

teaching  of  plane  geometry  in  schools  can  be  made 

very  interesting  by  the  free  use  of  the  kindergarten 

gifts.  It  would  be  perfectly  legitimate  to  require  pu- 
pils to  fold  the  diagrams  with  paper.  This  would 

give  them  neat  and  accurate  figures,  and  impress  the 

truth  of  the  propositions  forcibly  on  their  minds  It 

would  not  be  necessary  to  take  any  statement  on  trust. 
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But  what  is  now  realised  by  the  imagination  and  ideal- 

isation of  clumsy  figures  can  be  seen  in  the  concrete. 

A  fallacy  like  the  following  would  be  impossible. 

5.  To  prove  that  every  triangle  is  isosceles.  Let 

ABC,  Fig.  1,  be  any  triangle.  Bisect  AB  in  Z,  and 

through  Z  draw  ZO  perpendicular  to  AB.  Bisect  the 

angle  ACB  by  CO. 

(1)  If  CO  and  ZO  do  not  meet,  they  are  parallel. 

Therefore  CO  is  at  right  angles  to  AB.  Therefore 

AC=BC. 

(2)  If  CO  and  ZO  do  meet,  let  them  meet  in  O. 

Draw  OX  perpendicular  to  BC  and  OY  perpendicular 

to  AC.  Join  OA,  OB.  By  Euclid  I,  26  (B.  and  S., 

§  88,  cor.  7)*  the  triangles    YOC  and  XOC  are   con- 

*  These  references  are  to  Beman  and  Smith's  New  Plane  and  Solid  Geom- 
etry, Boston,  Ginn  &  Co.,  1899. 
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gruent;  also  by  Euclid  I,  47  and  I,  8  (B.  and  S.,  § 

156  and  §  79)  the  triangles  AOY  and  BOX  are  con- 

gruent.    Therefore 

AY+  YC=BX+XC, 

i.e.,  AC=BC. 

Fig.  2  shows  by  paper-folding  that,  whatever  tri- 
angle be  taken,  CO  and  ZO  cannot  meet  within  the 

triangle. 

Fig.  2. 

O  is  the  mid-point  of  the  arc  A  OB  of  the  circle 

which  circumscribes  the  triangle  ABC. 

6.  Paper-folding  is  not  quite  foreign  to  us.  Fold- 

ing paper  squares  into  natural  objects — a  boat,  double 
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boat,   ink  bottle,   cup-plate,   etc.,   is  well  known,   as 

also  the  cutting  of  paper  in  symmetric  forms  for  pur- 

poses of  decoration.      In  writing  Sanskrit  and   Mah- 

rati,  the  paper  is  folded  vertically  or  horizontally  to 

keep  the  lines  and  columns  straight.      In  copying  let- 

ters in  public  offices  an  even  margin  is  secured  by  fold- 

ing the  paper  vertically.    Rectangular  pieces  of  paper 

folded   double  have  generally  been  used  for  writing, 

and  before  the  introduction  of  machine-cut  letter  pa- 

per and  envelopes  of  various  sizes,  sheets  of  convenient 

size  were  cut  by  folding  and  tearing  larger  sheets,  and 

the  second  half  of  the  paper  was  folded  into  an  envel- 

ope inclosing  the  first  half.     This  latter  process  saved 

paper  and  had  the  obvious  advantage  of  securing  the 

post  marks  on  the  paper  written  upon.    Paper-folding 

has   been  resorted  to   in   teaching  the  Xlth  Book  of 

Euclid,  which  deals  with  figures  of  three  dimensions.* 

But  it  has  seldom  been  used  in  respect  of  plane  fig- 
ures. 

7.  I  have  attempted  not  to  write  a  complete  trea 

tise  or  text-book  on  geometry,  but  to  show  how  reg- 

ular polygons,  circles  and  other  curves  can  be  folded 

or  pricked  on  paper.  I  have  taken  the  opportunity  to 

introduce  to  the  reader  some  well  known  problems  of 

ancient  and  modern  geometry,  and  to  show  how  alge- 

bra and  trigonometry  may  be  advantageously  applied 

to  geometry,  so  as  to  elucidate  each  of  the  subjects 

which  are  usually  kept  in  separate  pigeon-holes. 

*  See  especially  Beman  and  Smiths  New  Plane  and  Solid  Geometry,  p.  287. 
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8.  The  first  nine  chapters  deal  with  the  folding  of 

the  regular  polygons  treated  in  the  first  four  books  of 

Euclid,  and  of  the  nonagon.  The  paper  square  of  the 

kindergarten  has  been  taken  as  the  foundation,  and 

the  other  regular  polygons  have  been  worked  out 

thereon.  Chapter  I  shows  how  the  fundamental  square 

is  to  be  cut  and  how  it  can  be  folded  into  equal  right- 

angled  isosceles  triangles  and  squares.  Chapter  II 

deals  with  the  equilateral  triangle  described  on  one  of 

the  sides  of  the  square.  Chapter  III  is  devoted  to 

the  Pythagorean  theorem  (B.  and  S.,  §  15G)  and  the 

propositions  of  the  second  book  of  Euclid  and  certain 

puzzles  connected  therewith.  It  is  also  shown  how  a 

right-angled  triangle  with  a  given  altitude  can  be  de- 

scribed on  a  given  base.  This  is  tantamount  to  find- 

ing points  on  a  circle  with  a  given  diameter. 

9.  Chapter  X  deals  with  the  arithmetic,  geometric, 

and  harmonic  progressions  and  the  summation  of  cer- 

tain arithmetic  series.  In  treating  of  the  progressions, 

lines  whose  lengths  form  a  progressive  series  are  ob- 

tained. A  rectangular  piece  of  paper  chequered  into 

squares  exemplifies  an  arithmetic  series.  For  the  geo- 

metric the  properties  of  the  right-angled  triangle,  that 

the  altitude  from  the  right  angle  is  a  mean  propor- 

tional between  the  segments  of  the  hypotenuse  (B. 

and  S.,  §  270),  and  that  either  side  is  a  mean  propor- 

tional between  its  projection  on  the  hypotenuse  and 

the  hypotenuse,  are  made  use  of.  In  this  connexion 

the  Delian  problem  of  duplicating  a  cube  has  been 
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explained.*  In  treating  of  harmonic  progression,  the 

fact  that  the  bisectors  of  an  interior  and  correspond- 

ing exterior  angle  of  a  triangle  divide  the  opposite 

side  in  the  ratio  of  the  other  sides  of  the  triangle  (B. 

and  S.,  §  249)  has  been  used.  This  affords  an  inter- 

esting method  of  graphically  explaining  systems  in 

involution.  The  sums  of  the  natural  numbers  and  of 

their  cubes  have  been  obtained  graphically,  and  the 

sums  of  certain  other  series  have  been  deduced  there- 

from. 

10.  Chapter  XI  deals  with  the  general  theory  of 

regular  polygons,  and  the  calculation  of  the  numerical 

value  of  n.  The  propositions  in  this  chapter  are  very 

interesting. 

11.  Chapter  XII  explains  certain  general  princi- 

ples, which  have  been  made  use  of  in  the  preceding 

chapters, — congruence,  symmetry,  and  similarity  of 

figures,  concurrence  of  straight  lines,  and  collinearity 

of  points  are  touched  upon. 

12.  Chapters  XIII  and  XIV  deal  with  the  conic 

sections  and  other  interesting  curves.  As  regards 

the  circle,  its  harmonic  properties  among  others  are 

treated.  The  theories  of  inversion  and  co-axial  circles 

are  also  explained.  As  regards  other  curves  it  is 

shown  how  they  can  be  marked  on  paper  by  paper- 

folding.  The  history  of  some  of  the  curves  is  given, 

and  it  is  shown  how  they  were  utilised  in  the  solution 

*See  Beman  and  Smith's  translation  of  Klein's  Famous  Problems  of  Ele- 

mentary Geometry,  Boston,  1S97 ;  also  their  translation  of  Fink's  history  0/ 
Mathematics,  Chicago,  The  Open  Court  Pub.  Co.,  1900. 
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of  the  classical  problems,  to  find  two  geometric  means 

between  two  given  lines,  and  to  trisect  a  given  recti- 

lineal angle.  Although  the  investigation  of  the  prop- 

erties of  the  curves  involves  a  knowledge  of  advanced 

mathematics,  their  genesis  is  easily  understood  and  is 

interesting. 

13.  I  have  sought  not  only  to  aid  the  teaching  of 

geometry  in  schools  and  colleges,  but  also  to  afford 

mathematical  recreation  to  young  and  old,  in  an  at- 

tractive and  cheap  form.  "Old  boys"  like  myself 

may  find  the  book  useful  to  revive  their  old  lessons, 

and  to  have  a  peep  into  modern  developments  which, 

although  very  interesting  and  instructive,  have  been 

ignored  by  university  teachers. 

T.  Sundara  Row. 

Madras,  India,  1893. 



I.  THE  SQUARE. 

1.  The  upper  side  of  a  piece  of  paper  lying  flat 

upon  a  table  is  a  plane  surface,  and  so  is  the  lower 
side  which  is  in  contact  with  the  table. 

2.  The  two  surfaces  are  separated  by  the  material 

of  the  paper.  The  material  being  very  thin,  the  other 

sides  of  the  paper  do  not  present  appreciably  broad 

surfaces,  and  the  edges  of  the  paper  are  practically 

lines.  The  two  surfaces  though  distinct  are  insepa- 
rable from  each  other. 

3.  Look  at  the  irregularly  shaped  piece  of  paper 

shown  in  Fig.  3,  and  at  this  page  which  is  rectangu- 
lar. Let  us  try  and  shape  the  former  paper  like  the 

latter. 

4.  Place  the  irregularly  shaped  piece  of  paper 

upon  the  table,  and  fold  it  flat  upon  itself.  Let  X'  X 
be  the  crease  thus  formed.  It  is  straight.  Now  pass 

a  knife  along  the  fold  und  separate  the  smaller  piece. 

We  thus  obtain  one  straight  edge. 

5.  Fold  the  paper  again  as  before  along  BY,  so 

that  the  edge  X'X  is  doubled  upon  itself.  Unfolding 

the  paper,  we  see  that  the  crease  BY'is  at  right  angles 

to  the  edge  X'X.      It  is  evident  by  superposition  that 
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the  angle  YBX'  equals  the  angle  XBY,  and  that  each 
of  these  angles  equals  an  angle  of  the  page.   Now  pass 

Fig.  3- 

a  knife  as  before  along  the  second  fold  and  remove 

the  smaller  piece. 
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6.  Repeat  the  above  process  and  obtain  the  edges 

CD  and  DA.  It  is  evident  by  superposition  that  the 

angles  at  A,  B,  C,  D,  are  right  angles,  equal  to  one 

another,  and  that  the  sides  BC,   CD  are  respectively 

Fig.  4- 

equal  to  DA,  AB.     This  piece  of  paper   (Fig.  3)  is 

similar  in  shape  to  the  page. 

7.  It  can  be  made  equal  in  size  to  the  page  by 

taking  a  larger  piece  of  paper  and  measuring  off  AB 

and  BC  equal  to  the  sides  of  the  latter. 
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8.  A  figure  like  this  is  called  a  rectangle.  By 

superposition  it  is  proved  that  (1)  the  four  angles  are 

right  angles  and  all  equal,  (2)  the  four  sides  are  not 

all  equal,  (3)  but  the  two  long  sides  are  equal,  and  so 

also  are  the  two  short  sides. 

9.  Now  take  a  rectangular  piece  of  paper,  A'B' CD, 
and  fold  it  obliquely  so  that  one  of  the  short  sides,  CD, 

Fig.  5- 

falls  upon  one  of  the  longer  sides,  DA',  as  in  Fig.  4. 

Then  fold  and  remove  the  portion  A' B'BA  which 
overlaps.  Unfolding  the  sheet,  we  find  that  ABCD 

is  now  square,  i.  e. ,  its  four  angles  are  right  angles, 

and  all  its  sides  are  equal. 

10.  The  crease  which  passes  through  a  pair  of  the 
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opposite  corners  B,  D,  is  a  diagonal  of  the  square. 

One  other  diagonal  is  obtained  by  folding  the  square 

through  the  other  pair  of  corners  as  in  Fig.  5. 

ii.  We  see  that  the  diagonals  are  at  right  angles 

to  each  other,  and  that  they  bisect  each  other. 

12.  The  point  of   intersection  of  the  diagonals  is 

called  the  center  of  the  square. 

Fig.  6. 

13.  Each  diagonal  divides  the  square  into  two  con- 

gruent right-angled  isosceles  triangles,  whose  vertices 

are  at  opposite  corners. 

14.  The  two  diagonals  together  divide  the  square 

into  four  congruent  right-angled  isosceles  triangles, 
whose  vertices  are  at  the  center  of  the  square. 
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15.  Now  fold  again,  as  in  Fig.  6,  laying  one  side 

of  the  square  upon  its  opposite  side.  We  get  a  crease 

which  passes  through  the  center  of  the  square.  It  is 

at  right  angles  to  the  other  sides  and  (1)  bisects  them; 

(2)  it  is  also  parallel  to  the  first  two  sides ;  (3)  it  is 

itself  bisected  at  the  center ;   (4)  it  divides  the  square 

Fig.  7. 

into  two  congruent  rectangles,  which  are,  therefore, 

each  half  of  it;  (5)  each  of  these  rectangles  is  equal 

to  one  of  the  triangles  into  which  either  diagonal 

divides  the  square. 

16.  Let  us  fold  the  square   again,   laying  the   re- 

maining two  sides  one  upon  the  other.      The  crease 



IN  PAPER  FOLDING  7 

now  obtained  and  the  one  referred  to  in  §  15  divide 

the  square  into  four  congruent  squares. 

17.  Folding  again  through  the  corners  of  the 

smaller  squares  which  are  at  the  centers  of  the  sides 

of  the  larger  square,  we  obtain  a  square  which  is  in- 
scribed in  the  latter.      (Fig.  7.) 

Fig.  8. 

18.  This  square  is  half  the  larger  square,  and  has 

the  same  center. 

19.  By  joining  the  mid-points  of  the  sides  of  the 

inner  square,  we  obtain  a  square  which  is  one-fourth 

of  the  original  square  (Fig.  8).  By  repeating  the  pro- 

cess, we  can  obtain  any  number  of  squares  which  are 
to  one  another  as 
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2"'  4'  "8*  16'  etC''  °r  2"'  P'  2»'  2*'  '  '  '  ' 

Each  square  is  half  of  the  next  larger  square, 

i.  e.,  the  four  triangles  cut  from  each  square  are  to- 

gether equal  to  half  of  it.  The  sums  of  all  these  tri- 

angles increased  to  any  number  cannot  exceed  the 

original  square,  and  they  must  eventually  absorb  the 

whole  of  it. 

Therefore  —  -\-  ̂   +  ™  +  etc.  to  infinity  =  1. £a  £i  £i 

20.  The  center  of  the  square  is  the  center  of  its 

circumscribed  and  inscribed  circles.  The  latter  circle 

touches  the  sides  at  their  mid-points,  as  these  are 

nearer  to  the  center  than  any  other  points  on  the 

sides. 

21.  Any  crease  through  the  center  of  the  square 

divides  it  into  two  trapezoids  which  are  congruent.  A 

second  crease  through  the  center  at  right  angles  to 

the  first  divides  the  square  into  four  congruent  quadri- 

laterals, of  which  two  opposite  angles  are  right  angles. 

The  quadrilaterals  are  concyclic,  i.  e.,  the  vertices  of 

each  lie  in  a  circumference. 



II.  THE  EQUILATERAL  TRIANGLE. 

22.  Now  take  this  square  piece  of  paper  (Fig.  9), 

and  fold  it  double,  laying  two  opposite  edges  one  upon 

the  other.     We  obtain  a  crease  which  passes  through 

Fig.  9. 

the  mid-points  of  the  remaining  sides  and  is  at  right 

angles  to  those  sides.  Take  any  point  on  this  line, 

fold  through  it  and  the  two  corners  of  the  square  which 
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are  on  each  side  of  it.    We  thus  get  isosceles  triangles 

standing  on  a  side  of  the  square. 

23.  The  middle  line  divides  the  isosceles  triangle 

into  two  congruent  right-angled  triangles. 

24.  The  vertical  angle  is  bisected. 

25.  If  we  so  take  the  point  on  the  middle  line,  that 

Fig.  10. 

its  distances  from  two  comers  of  the  square  are  equal 

to  a  side  of  it,  we  shall  obtain  an  equilateral  triangle 

(Fig.  10).  This  point  is  easily  determined  by  turning 

the  base  AB  through  one  end  of  it,  over  A  A',  until  the 
other  end,  B,  rests  upon  the  middle  line,  as  at  C. 

26.  Fold  the  equilateral  triangle  by  laying  each 
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of  the  sides  upon  the  base.  We  thus  obtain  the 

three  altitudes  of  the  triangle,  viz.:  A  A',  BB',  CC, 
(Fig.  11). 

27.  Each  of  the  altitudes  divides  the  triangle  into 

two  congruent  right-angled  triangles. 

28.  They  bisect  the  sides  at  right  angles. 

Fig.  11. 

29.  They  pass  through  a  common  point. 

30.  Let  the  altitudes  AA'  and  CC  meet  in  O. 

Draw  BO  and  produce  it  to  meet  AC  in  B '.  BB' 
will  now  be  proved  to  be  the  third  altitude.  From 

the  triangles  CO  A  and  CO  A',  OC  =  OA'.  From 

triangles  OCB  and  A' OB,  /_  OBC  —  lA'BO.  Again 

from  triangles  ABB'  and   CB'B,    /_AB 'B =  /_BB C, 



12  GEOMETRIC  EXERCISES 

i.  e.,  each  of  them  is  a  right  angle.  That  is,  BOB'  is 
an  altitude  of  the  equilateral  triangle  ABC.  It  also 

bisects  AC  in  B' . 
31.  It  can  be  proved  as  above  that  OA,  OB,  and 

OC  are  equal,  and  that  OA',  OB',  and  OC  are  also 
equal. 

32.  Circles  can  therefore  be  described  with  O  as  a 

center  and  passing  respectively  through  ̂ 4,  i?,  and  C 

and  through  ̂ ',  i?',  and  C .  The  latter  circle  touches 
the  sides  of  the  triangle. 

33.  The  equilateral  triangle  ABC  is  divided  into 

six  congruent  right-angled  triangles  which  have  one 

set  of  their  equal  angles  at  O,  and  into  three  congru- 

ent, symmetric,  concyclic  quadrilaterals. 

34.  The  triangle  AOC  is  double  the  triangle  A'OC; 

therefore,  AO  =  20A'.  Similarly,  BO  =  20B'  and 
CO  =  20C  Hence  the  radius  of  the  circumscribed 

circle  of  triangle  ABC  is  twice  the  radius  of  the  in- 
scribed circle. 

35.  The  right  angle  A,  of  the  square,  is  trisected 

by  the  straight  lines  AO,  AC.  Angle  BAC  =  ̂   of  a 

right  angle.  The  angles  C'AO  and  OAB'  are  each  \ 
of  a  right  angle.   Similarly  with  the  angles  at  B  and  C. 

36.  The  six  angles  at  O  are  each  f  of  a  right  angle. 

37.  Fold  through  A'B',  B'C,  and  C'A'  (Fig.  12). 

Then  A' B'C  is  an  equilateral  triangle.  It  is  a  fourth 
of  the  triangle  ABC. 

38.  A'B',  B'C,  C'A'  are  each  parallel  to  AB,  BC, 
CA,  and  halves  of  them. 
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39.  AC'A'B'  is  a  rhombus.      So  are  C'BA'B'  and 

CB'C'A'. 

40.  A'B',  B'C,  C'A'  bisect  the  corresponding  alti- 
tudes. 

41.  CC'i+AC'2  =  CC'2+  ±AC2  =AC2 

.-.  CC'2  =  %AC2 

...  CC"  =  £j/3-^C=£l   3-AB 
=  0.866   X^^- 

Fig.  12. 

42.  The  a  ABC=  rectangle  of  AC  and  C~Y7',  i.  e. 

\AB X  \V%'AB  =  \VZ-AB?  =  0.433. . . .  X^2- 

43.  The  angles  of  the  triangle  AC'C  are  in  the 
ratio  of  1:2:3,  and  its  sides  are  in  the  ratio  of  ]/  1 

:  l/3  :  1/4 . 



III.   SQUARES  AND  RECTANGLES. 

44.  Fold   the   given  square  as   in  Fig.    13.      This 

affords  the  well-known  proof  of  the  Pythagorean  the- 

Fig.  13- 

orem.    FGH being  a  right-angled  triangle,  the  square 

on  FH  equals  the  sum  of  the  squares  on  FG  and  GH. 

uFA  +  nDB  =  uFC. 

It  is  easily  proved  that  FC  is  a  square,  and  that 
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the  triangles  FGH,  HBC,  KDC,  and  FEK  are  con- 

gruent. 
If  the  triangles  FGH  and  HBC  are  cut  off  from 

the  squares  FA   and  DB,  and  placed  upon  the  other 

two  triangles,  the  square  FHCK  is  made  up. 

UAB  =  a,  GA=b,  and  FH=c,  then  a2  +  ̂2  =  ̂ 2. 

Fig.  14. 

45.  Fold  the  given  square  as  in  Fig.  14.  Here  the 

rectangles  AF,  BG,  CH,  and  DE  are  congruent,  as 

also  the  triangles  of  which  they  are  composed.  EFGH 

is  a  square  as  also  KLMN. 

Let  AK=a,  KB  =  b,  and  NK  =  c, 

then  «2  +  ̂  =  ̂ 2,  i.  e.  uKLMN. 
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nABCF>  =  (a-\-b)2. 

Now  square  ABCD  overlaps  the  square  KLMN 

by  the  four  triangles  AKN,  BLK,  CML,  and  DNM. 

But  these  four  triangles  are  together  equal  to  two 

of  the  rectangles,  i.  e.,  to  lab. 

Therefore  {a  +  bf  =  a2+  b2  +  lab. 

46.  EF=a  —  b,  and  a  EFGH=  (a  — b)2. 

The  square  EFGJL  is  less  than  the  square  KLMN 

by  the  four  triangles  FNK,  GKL,  HLM,  and  EMN. 

But  these  four  triangles  make  up  two  of  the  rect- 

angles, i.  e.,  2ab. 

(a^-b)*  =  a2+b'- 

2ab. 

M 

H   G 

Z  F 

A K B 
Fig.  15 

47.  The  square  ABCD  overlaps  the  square  EFGH 

by  the  four  rectangles  AF,  BG,  CH,  and  DE. 

...    (a_|_£)2__(a_£)2  =  40£_ 

48.  In  Fig.  15,  the  square  ABCF>=(a  +  bf,  and 
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the  square  EFGLL=(a  —  b)2.  Also  square  AKGN 

=  square  EL  CM =  a2.  Square  KBLF  =  square 
NHMD  =  b2. 

Squares  AB CD  and  EFGH  are  together  equal  to 

the  latter  four  squares  put  together,  or  to  twice  the 

square  AKGN  and  twice  the  square  KBLF,  that  is, 

(a  -f  bf  +  {a  —  bf  =  2a2  -f  2b2. 
D_  O  N  C 

M 
G 

H 

E                                     F 

R K B 

Fig.  16. 

49.  In  Fig.  16  the  rectangle  PL  is  equal  to  (a-\-b) 

(a  —  b). 

Because  the  rectangle  EK  =  FM,  therefore  rect- 

angle PL  —  square  PK — square  AE,  i.  e.,  (a  +  b) 
(a  —  b)  =  a2  —  b2. 

50.  If  squares  be  described  about  the  diagonal  of 

a  given  square,  the  right  angle  at  one  corner  being 

common  to  them,  the  lines  which  join  this  corner  with 

the  mid-points    of    the   opposite   sides   of    the   given 
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square  bisect  the  corresponding  sides  of  all  the  inner 

squares.  (Fig.  IT.)  For  the  angles  which  these  lines 

make  with  the  diagonal  are  equal,  and  their  magni- 

tude is  constant  for  all  squares,  as  may  be  seen  by 

Fig.  17. 

superposition.      Therefore  the  mid-points  of  the  sides 
of  the  inner  squares  must  lie  on  these  lines. 

51.  ABCD  being  the  given  square  piece  of  paper 

(Fig.  18),  it  is  required  to  obtain  by  folding,  the  point 

X  in  AB,  such  that  the  rectangle  AB-XB  is  equal  to 
the  square  on  AX. 

Double  BC  upon  itself  and  take  its  mid-point  E. 
Fold  through  E  and  A. 

Lay  EB  upon  EA  and  fold  so  as  to  get  EF,  and 

G  such  that  EG  =  EB. 

Take  AX =  AG. 
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Then  rectangle  AB-XB  =  AX2. 
Complete   the  rectangle   BCHX   and    the   square 

AXKL. 

Let  Xffcut  EA  in  M.      Take  FY=FB. 

Then  FB  =  FG  =  FY  =  XM  and  XM=  \AX. 

Fig.  18. 

Now,  because  BY  is  bisected  in  F  and  produced 
to  A, 

AB-AY^rFYi  =  AF^,  by  §  49, 
=  AG2-\-FG2,  by  §  44. 

.-.  AB-AY=AG1, 

=  AX2. 
But  ̂ X2=4-XJ/2  =  ̂ F2. 
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.-.  AX=BYand  AY=XB. 

.-.  ABXB  =  AX2. 

AB  is  said  to  be  divided  in  X  in  median  section.* 
Also 

AB-AY=BY*, 

i.  e.,  AB  is  also  divided  in  Kin  median  section. 

52.  A  circle  can  be  described  with  F  as  a  center, 

its  circumference  passing  through  B,  G,  and  Y.  It 

will  touch  EA  at  G,  because  FG  is  the  shortest  dis- 
tance from  F  \.o  the  line  EGA. 

53.  Since 
BH=BN, 

subtracting  BK  we  have 

rectangle  XKNY=  square  CHRP, 

i.  e.,  AX-YX=AY\ 
i.  e. ,  ̂X  is  divided  in  Kin  median  section. 

Similarly  i>Kis  divided  in  X  in  median  section. 

54.  •.•  AB-XB  =  AX? 

.-.  3AB-XB  =  AX2  +  BX-BC-\-  CDCP 

=  AB2  +  BX'K 

55.  Rectangles  B H  and  YD  being  each  =AB-  XB, 

rectangle  HY+  square  CK  =  AX*  =  AB- XB. 

56.  Hence  rectangle  HY=  rectangle  i?.AT,  i.  e., 

AX-XB  =  ABXY 

57.  Hence  rectangle  HN=AX-XB—BX'1. 

*The  term  "  golden  section  "  is  also  used.    See  Beman  and  Smith's  New 
Plane  and  Solid  Geometry,  p.  196. 
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58.  LetAB  =  a,  XB  =  x. 

Then  (a  —  x)2  =  ax,  by  §  51. 
a2  -4-  x2  =  3ax,  by  §  54 ; 

.  • .  x2  —  3ax  -4-  a2  =  0 

and  x  =  ~  (3  — i/5) . 

.-.  a  —  x  =  ̂(y~b  —  l)=aX  0.6180   
a2  — 

.-.  (a  —  x)2  =  —  (3  —  t/5)=«2X  0.3819.... 

The  rect.  .ff/'iO' 

=  (0 — ^)jc 

=  «2  (1/5_2)  =  a2x0.2360. . . . 

EA2=bEB2  =  ~AB2. 4 

l/5 EA  =  -ir-AB  =  1.1180...  .x<*. 

59.  In  the  language  of  proportion 

AB  :  ̂ X=^X:  X^. 

The  straight  line  AB  is  said  to  be  divided  "in  ex- 

treme and  mean  ratio." 

60.  Let  AB  be  divided  in  X  in  median  section. 

Complete  the  rectangle  CBXH  (Fig.  19).  Bisect  the 

rectangle  by  the  line  MNO.  Find  the  point  N  by 

laying  XA  over  X  so  that  A  falls  on  MO,  and  fold 

through  XN,  NB,  and  iV^.     Then  BAN  is  an  isos- 
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celes  triangle  having  its  angles  ABN  and  BNA  double 

the  angle  NAB. 
AX=XN=NB 

IABN=INXB 
lNAX=/_XNA 
LNXB  =  1/_NAX 

Fig.  19. 

Z  ABN=  2  /  NAB. 

AN'i  =  MN2-\-AM2 

=  ̂ 2 



and 
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61.  The  right  angle  at  A  can  be  divided  into  five 

equal  parts  as  in  Fig.  20.  Here  N'  is  found  as  in 

§60.      Then   io\&  AN' Q;   bisect    iQAB  by  folding, 

Fig.  20. 

fold  over  the  diagonal  AC  and  thus  get  the   point 

Q',  P'- 

62.  To  describe  a  right-angled  triangle,  given  the 

hypotenuse  AB,  and  the  altitude. 

Fold  EF  (Fig.  21)  parallel  to  AB  at  the  distance 

of  the  given  altitude. 

Take  G  the  middle  point  of  AB.  Find  Hhy  fold- 

ing GB  through  G  so  that  B  may  fall  on  EF. 
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Fold  through  H  and  A,  G,  and  B. 
AHB  is  the  triangle  required. 

Fig.  21. 

63.  ABCD  (Fig.  22)  is  a  rectangle.    It  is  required 
to  find  a  square  equal  to  it  in  area. 

Q P 

5 

'\ 

c 

1 \ 0 £ 5 

N 

M 

Fig.  22. 

Mark  off  BM=BC. 

Find  <9,  the  middle  point  of  AM,  by  folding. 
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Fold  OM,  keeping  0  fixed  and  letting  M  fall  on 

line  BC,  thus  finding  P,  the  vertex  of  the  right-angled 

triangle  AMP. 

Describe  on  PB  the  square  BPQR. 

The  square  is  equal  to  the  given  rectangle. 

For  •.  •  BP  =  QP,  and  the  angles  are  equal,  triangle 
BMP  is  evidently  congruent  to  triangle  QSP. 

.-.  QS=BM=AD. 

.  • .  triangles  DA  T  and  QSP  are  congruent. 

.  • .  PC=  SB.  and  triangles  PSA  and  CPT  are  con- 

gruent. 

.-.  CD  A  BCD  can  be  cut  into  three  parts  which 
can  be  fitted  together  to  form  the  square  RBPQ. 

Fig.  23. 

64.  Take  four  equal  squares  and  cut  each  of  them 

into  two  pieces  through  the  middle  point  of  one  of  the 

sides  and    an   opposite   corner.      Take   also   another 
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equal  square.  The  eight  pieces  can  be  arranged  round 

the  square  so  as  to  form  a  complete  square,  as  in  Fig. 

23,  the  arrangement  being   a  very  interesting  puzzle. 

The  fifth  square  may  evidently  be  cut  like  the 

others,  thus  complicating  the  puzzle. 

65.  Similar  puzzles  can  be  made  by  cutting  the 

squares  through  one  corner  and  the  trisection  points 

of  the  opposite  side,  as  in  Fig.  24. 

Fig.  24. 

66.  If  the  nearer  point  is  taken  10  squares  are  re- 

quired, as  in  Fig.  24  ;  if  the  remoter  point  is  taken  13 

squares  are  required,  as  in  Fig.  25. 

67.  The  puzzles  mentioned  in  §§  65,  66,  are  based 

upon  the  formulas 
12  +  22  =  5 

12  +  32  =  10 

22  _|_  32  =  13. 
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The  process  may  be  continued,  but  the  number  of 

squares  will  become  inconveniently  large. 

68.  Consider  again  Fig.  13  in  §  44.  If  the  four 

triangles  at  the  corners  of  the  given  square  are  re- 

moved, one  square  is  left.  If  the  two  rectangles  FK 

and  KG  are  removed,  two  squares  in  juxtaposition 

are  left. 

Fig.  25. 

69.  The  given  square  may  be  cut  into  pieces  which 

can  be  arranged  into  two  squares.  There  are  various 

ways  of  doing  this.  Fig.  23,  in  §  65,  suggests  the 

following  elegant  method:  The  required  pieces  are 

(1)  the  square  in  the  center,  and  (2)  the  four  con- 

gruent symmetric  quadrilaterals  at  the  corners,  to- 

gether with  the  four  triangles.  In  this  figure  the  lines 

from  the  mid-points  of  the  sides  pass  through  the  cor- 
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ners  of  the  given  square,  and  the  central  square  is 

one-fifth  of  it.  The  magnitude  of  the  inner  square 

can  be  varied  by  taking  other  points  on  the  sides  in- 
stead of  the  corners. 

70.  The  given  square  can  be  divided  as  follows 

(Fig.  26)  into  three  equal  squares  : 

Take  BG  =  half  the  diagonal  of  the  square. 

Fig.  26. 

Fold  through  C  and  G. 

Fold  B M  perpendicular  to  CG. 

Take  MP,  CN,  and  NL  each  =  BM. 

Fold  PH,  NK,  LF  at  right  angles  to  CG,  as  in 

Fig.  26. 
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Take  NK=BM,  and  fold  KE  at  right  angles  to 
NK. 

Then  the  pieces  1,  4,  and  6,  3  and  5,  and  2  and  7 

form  three  equal  squares. 

Now  CG2  =  3BG2, 
and  from  the  triangles  GBC  and  CMB 

BM  _  BG 
~BC~CG' 

Letting  BC=a,  we  have 

BM=—=. 



IV.   THE  PENTAGON. 

71.  To  cut  off  a  regular  pentagon  from  the  square 
A  BCD. 

Divide  BA  in  X  in  median  section  and  take  M 

the  mid-point  of  AX. 

D,   .C 

Fig.  27. 

Then  AB-AX=XB'1,  and  AM=MX. 
Take  BN=AM  or  MX. 

Then  MJV=XB. 

Lay  off  NP  and  J/i?  equal  to  MN,  so  that  i3  and 
R  may  lie  on  j5C  and  AD  respectively. 



PAPER  FOLDING  31 

Lay  off  RQ  and  PQ  =  MR  and  NP. 

MNPQR  is  the  pentagon  required. 

In  Fig.  19,  p.  22,  AN,  which  is  equal  to  AB,  has 

the  point  N  on  the  perpendicular  MO.  If  A  be  moved 

on  AB  over  the  distance  MB,  then  it  is  evident  that 

iVwill  be  moved  on  to  BC,  and  X  to  M. 

Therefore,  in  Fig.  27,  NR  =  AB.    Similarly  MP  = 

AB.      RP  is  also  equal  to  AB  and  parallel  to  it. 

/  RMA  =  *  of  a  rt.  /  . 

.  ■ .  /_  NMR  =|  of  a  rt  /  • 

Similarly        /  PNM=  %  of  art./. 

From  triangles  MNR  and  (?AP,  /  NMR  =  /_  RQP 

=  1  of  a  rt.  /. 

The  three  angles  at  J/?  iV,  and  Q  of  the  pentagon 

being  each  equal  to  §  of  a  right  angle,  the  remain- 

ing two  angles  are  together  equal  to  -^2-  of  a  right 
angle,  and  they  are  equal.  Therefore  each  of  them 

is  I  of  a  right  angle. 

Therefore  all  the  angles  of  the  pentagon  are  equal. 

The  pentagon  is  also  equilateral  by  construction. 

72.  The  base  MN  oi  the  pentagon  is  equal  to  XB, 

i.  e.,  to—  ■  (l    5  —  l)=ABX 0.6180....  §  58. 

The  greatest  breadth  of  the  pentagon  is  AB. 

73.  If/  be  the  altitude, 

AB2  =/2  -f 
^(l/5-l) 

=f  +  ̂ *  •  1=1^, 
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J>2  =  AB2>h  — 
3  — 1/5 

~8 

=  AB* 

.-.  p  —  AB 

5  +  1/5 

8       " 
l/lO-f  2v  5 

=  ABx  0.9510....=^  cos  18c 

Fig.  28. 

74.  If  ̂   be  the  radius  of  the  circumscribed  circle, 

AB  2AB 
R  = 2cosl8°-  "  T/10  +  2t/5 

10 

=  ̂ ^X0.5257.... 
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75.   If  r  be  the  radius  of  the  inscribed  circle,  then 

from  Fig.  28  it  is  evident  that 

5- 

-l/5 

10 

I' 

-T/5 

511/5  J 

-R  =  AB-s^-^   AS  •-yl 

=  ABX  0.4253   

76.  The  area  of  the  pentagon  is  5r  X  £  the  base  of 
the  pentagon,  i.  e., 

5^^.^.0/5-!) 

=^■4  "J 

5  —  I/5 

— ^   =  ̂ 2  X  0. 6571 

77.   In  Fig.  27  let  iV?  be  divided  by  MQ  and  il^<2 
in  E  and  i^. 

Then  • .  •  MN=  ̂ f-  •  (i/5  —  1)  ...  §  72 

and  cos  36°  = 

2       cos  36°"  i/5  +  l 
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EF=AB  —  2RE  =  AB  —  AB(3—V&) 

=  A£(l/b  —  2)...  (2) 
RF=MN. 

RF:  RE  =  RE  :  EF(hy  §  51)   (3) 

|/6_  1  :  3  —  1/5  =  3—^5:2(1/5  —  2)   (4) 

By  §  76  the  area  of  the  pentagon 

AB--l-^ 4      >        10 

,2 

/-,/5  +  lV     5  5—1/5 

=  J/Yl™  •  4  •  l/25  -f  10  t/5, 4 

since  AB  =  MN  ■  -1 2 

.-.  the  area  of  the  inner  pentagon 

=  ̂ 7^2  •  *  •  l/25  +  10  1    5 4 

=  ̂ 2  •  (l/5  —  2)2  •  I  •  1/25+IO1/5  . 

The  larger  pentagon  divided  by  the  smaller 

=  MJV2  :  £^2 
=  2  :  (7  —  3l/5) 
=  1  :  0.145S98   

78.  If  in  Fig.  27,  angles  QEK  and  LFQ  are  made 

equal  to  ERQ  or  ̂ (/P,  K,  L  being  points  on  the  sides 

QR  and  £P  respectively,  then  EFLQK  will  be  a  reg- 

ular pentagon  congruent  to  the  inner  pentagon.  Pen- 
tagons can  be  similarly  described  on  the  remaining 

sides  of  the  inner  pentagon.  The  resulting  figure 

consisting  of  six  pentagons  is  very  interesting. 



V.   THE  HEXAGON. 

79.  To   cut  off   a   regular   hexagon   from   a   given 

square. 

Fig.  29. 

Fold  through  the  mid-points  of  the  opposite  sides, 
and  obtain  the  lines  A  OB  and  COD. 

On  both  sides  of  AO  and  OB  describe  equilateral 

triangles  (§  25),  AOE,  AHO;  BFO  and  BOG. 
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Draw  EF  and  HG. 

AHGBFE  is  a  regular  hexagon. 

It  is  unnecessary  to  give  the  proof. 

The  greatest  breadth  of  the  hexagon  is  AB. 

80.   The  altitude  of  the  hexagon  is 

^-  •  AB  =  0.866 ....  x  AB. 

Fig.  30. 

81.    If  R  be  the  radius  of  the  circumscribed  circle, 
1 

R=  0  AB. 

82.   If  r  be  the  radius  of  the  inscribed  circle, 

r=]     -  -^^  =  0.433..  ..XAB. 

-A 
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83.  The  area  of  the  hexagon  is  6  times  the  area  of 

the  triangle  HGO, 

„    AB     i/3 
4         4 

3l/3 

AB. 

8 ^^2  =  0.6495..  ..XAB*. 

Also  the  hexagon  =  £  ■  AB  ■  CZ>. 

=  1|  times  the  equilateral  triangle  on  ,4i?. 

Fig.  3i- 

84.  Fig.  30  is  an  example  of  ornamental  folding 

into  equilateral  triangles  and  hexagons. 

85.  A  hexagon  is  formed  from   an  equilateral  tri- 

angle by  folding  the  three  corners  to  the  center. 

The  side  of  the  hexagon   is  1  of  the  side  of  the 

equilateral  triangle. 
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The  area  of  the  hexagon  =  §  of  the  equilateral 

triangle. 

86.  The  hexagon  can  be  divided  into  equal  regular 

hexagons  and  equilateral  triangles  as  in  Fig.  31  by 

folding  through  the  points  of  trisection  of  the  sides. 



VI.   THE  OCTAGON. 

87.  To  cut  off  a  regular  octagon  from  a  given  square. 

Obtain  the  inscribed  square  by  joining  the  mid- 

points A,  B,  C,  D  of  the  sides  of  the  given  square. 

Fig.  32. 

Bisect  the  angles  which  the  sides  of  the  inscribed 

square  make  with  the  sides  of  the  other.  Let  the  bi- 

secting lines  meet  in  E.  F,  G,  and  H. 
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AEBFCGDH  is  a  regular  octagon. 

The  triangles  AEB,  BEC,  CGD,  and  DHA  are 

congruent  isosceles  triangles.  The  octagon  is  there- 

fore equilateral. 

The  angles  at  the  vertices,  E,  F,  G,  If  oi  the  same 

four  triangles  are  each  one  right  angle  and  a  half, 

since  the  angles  at  the  base  are  each  one-fourth  of  a 

right  angle. 

Therefore  the  angles  of  the  octagon  at  A,  B,  C, 

and  D  are  each  one  right  angle  and  a  half. 

Thus  the  octagon  is  equiangular. 

The  greatest  breadth  of  the  octagon  is  the  side  of 

the  given  square,  a. 

88.  If  R  be  the  radius  of  the  circumscribed  circle, 

and  a  be  the  side  of  the  original  square, 

89.  The  angle  subtended  at  the  center  by  each  of 

the  sides  is  half  a  right  angle. 

90.  Draw  the  radius  OE  and  let  it  cut  AB  in  K 

(Fig.  33). 

Then  AK=  OK=  °d  =  -?—. 1/2       2]/2 

KE=  OA  —  OK=  -J   %=  =  ~ .  (2  —  1/2). 
2        2i/2         4  J 

Now  from  triangle  AEK, 

AEi^ARi  +  KE? 

a2         a2 

=  T  +  ̂ '(3-2"2) 
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4i 

=  ~-  (4-21/2) 

«" 

=  _.(2_1/2). 

..A£=j  •  l/2—i/2. 

91.  The  altitude  of  the  octagon  is  CE  (Fig.  33). 
But  CE*  =  AC2  —  AE? 

=  a*-  £  •  (2_i/2)  =  f!. (2  +  1/2). 

^/^^// \ x/^^V// 

K                  0/ 

k\A     / 

Fig.  33. 

.-.    C£  =  ̂'    I/2  +  I/2. 

92.  The  area  of  the  octagon  is  eight  times  the  tri- 
angle AOE  and 

a  a  a2 =  ±0E-  AK=i 

2      2 1/2  "     i/2 
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93.  A  regular  octagon  may  also  be  obtained  by 

dividing  the  angles  of  the  given  square  into  four  equal 

parts. 
2  Y 

w 

Fig.  34- 

It  is  easily  seen  that  EZ  =  WZ  =  a,  the  side  of  the 

square. 
XZ=a\/2; 

X£  =  a(}/2  —  l); 
XE  =  WH=  WK; 

XX=a—a(y'2  —  l) 
=  a  (2—1/2). 

Now  KZ*  =  ai  +  «2 (1/2  —  l)2  =  a> (4  — 2l/2) 

.-.  KZ=a  1/4  —  21/2. 

Also  GE  =  XZ—2XE 

=  av2  —  2a{V2  —  \) 

=  a(2  —  V2). 
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.-.  H0=^  (2—l/2). 

Again  0Z=^V2, 

and  HZ2  =  If02+OZ2 

a' 

=  _(6_4i/2  +  2) 

=  fl2  (2—i/2). 

HZ=aV/2— 1/2. 
HK  =  KZ—HZ 

=  al/4  —  2V2  —  a\/2—l/2 

=  a-(\/2  —  V2)  -(l/2  — 1) 

=  «l/lO  —  7 1/2. 

^Z  =  i/TA'=|-l/lO  — 7k'2, 

and  HA  =  ̂   l/20  — 14i/2. 

94.  The  area  of  the   octagon   is   eight   times   the 

area  of  the  triangle  HO  A, 

7  l/2 

=  ̂ <92-2i/2 
a 

y(2-l/2) 
2i/2 

^ 
=  ̂ --2|/2-(6  — 4i/2) 4 

=  a2 -(3 1/2  —  4) 

=  a2-l/2-(V/2  —  l)2. 
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95.  This  octagon  :  the  octagon  in  §  92 

=  (2  — 1/2  )2  :  1  or  2  :  (V2  +  l)2; 
and  their  bases  are  to  one  another  as 

1/T:  l/2  +  1. 



VII.   THE  NONAGON. 

96.  Any  angle  can  be  trisected  fairly  accurately  by 

paper  folding,  and  in  this  way  we  may  construct  ap- 
proximately the  regular  nonagon. 

Fig.  35- 

Obtain  the  three  equal  angles  at  the  center  of  an 

equilateral  triangle.      (§  25.) 
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For  convenience  of  folding,  cut  out  the  three 

angles,  A  OF,  FOC,  and  CO  A. 

Trisect  each  of  the  angles  as  in  Fig.  35,  and  make 

each  of  the  arms  =  OA. 

97.  Each  of   the  angles  of   a  nonagon  is  J^4-  of  a 

right  angle  =  140°. 
The  angle  subtended  by  each  side  at  the  center  is 

I  of  a  right  angle  or  40°. 
Half  this  angle  is  %  of  the  angle  of  the  nonagon. 

98.  OA  =  \a,  where  a  is  the  side  of  the  square;  it 

is  also  the  radius  of  the  circumscribed  circle,  R. 

The  radius  of  the  inscribed  circle  =  R  .  cos  20° 

=  \a  cos  20° 

=  ~  X0. 9396926 

=  tfX0-4698463. 

The  area  of   the  nonagon  is  9  times  the  area  of 

the  triangle  AOL 

=  9-^-£i?sin40o 

=  §  R2-  sin  40° 

9,22 

=  -^-X  0.6427876 

=  a2X0. 723136. 



VIII.  THE  DECAGON  AND  THE  DODECAGON 

99.  Figs.  36,  37  show  how  a  regular  decagon,  and 

a  regular  dodecagon,  may  be  obtained  from  a  penta- 

gon and  hexagon  respectively. 

Fig.  36. 

The  main  part  of  the  process  is  to  obtain  the 

angles  at  the  center. 

In  Fig.  36,  the  radius  of  the  inscribed  circle  of 

the  pentagon  is  taken  for  the  radius  of  the  circum- 

scribed circle  of  the  decagon,  in  order  to  keep  it 

within  the  square. 
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ioo.  A  regular  decagon  may  also  be  obtained  as 
follows  : 

Obtain  X,  Y,  (Fig.  38),  as  in  §  51,  dividing  AB  in 

median  section. 

Take  M  the  mid-point  of  AB. 

Fold  XC,  MO,  YD  at  right  angles  to  AB. 

Take  0  in  MO  such  that  YO  =  AY,  or  YO  =  XB. 

Fig.  37- 

Let  YO,  and  XO  produced  meet  XC,  and  YD  in  C 

and  D  respectively. 

Divide  the  angles  XOC  and  DOY  into  four  equal 

parts  by  HOE,  KOF,  and  LOG. 

Take  Otf,  OK,  OL,  OE,  OF,  and  OG  equal  to 

CFor  CX 

Join  X,  H,  K,  L,  C,  D,  E,  F)  G,  and  Y,  in  order. 
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Z  YOX=\  of  a  rt.  /  =36°. 

49 

Fig.  38. 

By  bisecting  the  sides  and  joining  the  points  thus 

determined  with  the  center,  the  perigon  is  divided 

into  sixteen  equal  parts.  A  16-gon  is  therefore  easily 

constructed,  and  so  for  a  32-gon,  and  in  general  a 

regular  2"-gon. 



IX.  THE  PENTEDECAGON. 

101.  Fig.   39  shows  how  the  pentedecagon  is  ob- 

tained from  the  pentagon. 

Let  ABCDE  be  the  pentagon  and  O  its  center. 

f\      \            T^1 
^  \\  / 

\  /<    / 

A  K  B 

Fig.  39- 

Draw  OA,  OB,  OC,  OD,  and  OF.  Produce  DO 

to  meet  AB  in  K. 

Take  OF=\  of  OD. 

Fold  GFH  at  right  angles  to  OF.  Make  0G  = 
0H=  OD. 
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Then  GDH  is  an  equilateral  triangle,  and  the 

angles  DOG  and  HOD  are  each  120°. 

But  angle  DOA  is  144°;  therefore  angle  GOA  is 

24°. 

That  is,  the  angle  EOA,  which  is  72°,  is  trisected 
by  OG. 

Bisect  the  angle  EOG  by  OL,  meeting  EA  in  L, 

and  let  OG  cut  EA  in  M;  then 

OL  =  OM. 

In  OA  and  OE  take  OP  and  C<2  equal  to  (9Z  or 
6W. 

Then  PM,  ML,  and  Z<2  are  three  sides  of  the 

pentedecagon. 

Treating  similarly  the  angles  A  OB,  BOC,  COD, 

and  DOE,  we  obtain  the  remaining  sides  of  the  pente- 
decagon. 



X.  SERIES. 

ARITHMETIC  SERIES. 

102.  Fig.  40  illustrates  an  arithmetic  series.  The 

horizontal  lines  to  the  left  of  the  diagonal,  including 

the  upper  and  lower  edges,  form  an  arithmetic  series. 

Fig.  40. 

The  initial  line  being  a,  and  d  the  common  difference, 

the  series  is  a,  a-\-  d,  a  -\-  2d,  a  -4-  3d,  etc. 

103.  The  portions  of  the  horizontal  lines  to   the 

right  of  the  diagonal  also  form  an  arithmetic  series, 
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but  they  are   in   reverse  order  and   decrease   with   a 

common  difference. 

104.  In  general,  if  /  be  the  last  term,  and  s  the 

sum  of  the  series,  the  above  diagram  graphically 

proves  the  formula 

s=  2"  (0  +  0- 

105.  If  a  and  c  are  two  alternate  terms,  the  middle 

term  is 

a  -\-  c 

106.  To  insert  n  means  between  a  and  /,  the  ver- 

tical line  has  to  be  folded  into  n-\- 1  equal  parts.  The 
common  difference  will  be 

/ — a 

107.  Considering  the  reverse  series  and  interchan- 

ging a  and  /,  the  series  becomes 

a,  a — d,  a  —  2d. .  . .  /. 

The  terms  will  be  positive  so  long  as  a^>{n — l)d, 

and  thereafter  they  will  be  zero  or  negative. 

GEOMETRIC  SERIES. 

108.  In  a  right-angled  triangle,  the  perpendicular 

from  the  vertex  on  the  hypotenuse  is  a  geometric  mean 

between  the  segments  of  the  hypotenuse.  Hence,  if 

two  alternate  or  consecutive  terms  of  a  geometric 

series  are  given  in  length,  the  series  can   be  deter- 
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mined  as  in  Fig.  41.  Here  0PU  0P2,  0P3,  0Pi} 

and  OP,  form  a  geometric  series,  the  common  rate 

being  OPi  :  OP-2. 

Fig.  41. 

If  OP\  be  the  unit  of  length,  the  series  consists  of 

the  natural  powers  of  the  common  rate. 

109.  Representing  the  series  by  a,  ar,  ar2, .... 

P*Pz  =  arVl  +  r*. 
PzPi=aWl  +r 

These  lines  also  form  a  geometric  series  with  the 

common  rate  r. 

no.  The  terms  can  also  be  reversed,  in  which  case 

the  common  rate  will  be  a  proper  fraction.      If  OP5 

be  the  unit,  OP\  is  the  common  rate.     The  sum  of 

the  series  to  infinity  is OP, 

OPh—OPi' 
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in.  In  the  manner  described  in  §  108,  one  geo- 

metric mean  can  be  found  between  two  given  lines, 

and  by  continuing  the  process,  3,  7,  15,  etc.,  means 

can  be  found.  In  general,  2"  —  1  means  can  be  found, 

n  being  any  positive  integer. 

112.  It  is  not  possible  to  find  two  geometric  means 

between  two  given  lines,  merely  by  folding  through 

known  points.  It  can,  however,  be  accomplished  in 

the  following  manner  :  In  Fig.  41,  OP\  and  OP\  being 

given,  it  is  required  to  find  Pi  and  P3.  Take  two  rect- 

angular pieces  of  paper  and  so  arrange  them,  that  their 

outer  edges  pass  through  Pi  and  Pi,  and  two  corners 

lie  on  the  straight  lines  OP2  and  OP%  in  such  a  way 

that  the  other  edges  ending  in  those  corners  coincide. 

The  positions  of  the  corners  determine  OP2  and  OP3. 

113.  This  process  gives  the  cube  root  of  a  given 

number,  for  if  OP\  is  the  unit,  the  series  is  1,  r,  r2,  r3. 

114.  There  is  a  very  interesting  legend  in  connec- 

tion with  this  problem.*  "The  Athenians  when  suf- 

fering from  the  great  plague  of  eruptive  typhoid  fever 

in  430  B.  C,  consulted  the  oracle  at  Delos  as  to  how 

they  could  stop  it.  Apollo  replied  that  they  must 

double  the  size  of  his  altar  which  was  in  the  form  of  a 

cube.  Nothing  seemed  more  easy,  and  a  new  altar 

was  constructed  having  each  of  its  edges  double  that 

of  the  old  one.     The  god,  not  unnaturally  indignant, 

*But  see  Beman  and  Smith's  translation   of  Fink's  History  of  Mathe- 
matics, p.  82,  207. 
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made  the  pestilence  worse  than  before.  A  fresh  dep- 

utation was  accordingly  sent  to  Delos,  whom  he  in- 

formed that  it  was  useless  to  trifle  with  him,  as  he 

must  have  his  altar  exactly  doubled.  Suspecting  a 

mystery,  they  applied  to  the  geometricians.  Plato, 

the  most  illustrious  of  them,  declined  the  task,  but 

referred  them  to  Euclid,  who  had  made  a  special 

study  of  the  problem."  (Euclid's  name  is  an  inter- 

polation for  that  of  Hippocrates.)  Hippocrates  re- 

duced the  question  to  that  of  finding  two  geometric 

means  between  two  straight  lines,  one  of  which  is 

twice  as  long  as  the  other.  If  a,  x,  y  and  2a  be  the 

terms  of  the  series,  x3  =  2az.  He  did  not,  however, 

succeed  in  finding  the  means.  Menaechmus,  a  pupil 

of  Plato,  who  lived  between  375  and  325  B.  C,  gave 

the  following  three  equations  :  * 

a  :  x  =  x  :  y=y  :  2a. 

From  this  relation  we  obtain  the  following  three 

equations  : 

x2  =  ay      ( 1 ) 

y2  =  2ax   (2) 

xy  =  2a2   (3) 

(1)  and  (2)  are  equations  of  parabolas  and  (3)  is 

the  equation  of  a  rectangular  hyperbola.  Equations 

(1)  and  (2)  as  well  as  (1)  and  (3)  give  xz=2a3.  The 

problem  was  solved  by  taking  the  intersection  (a)  of 

the  two  parabolas  (1)  and  (2),  and  the  intersection  (/?) 

of  the  parabola  (1)  with  the  rectangular  hyperbola  (3). 

*  Ibid.,  p.  207. 



IN  PAPER  FOLDING 57 

HARMONIC  SERIES. 

115.  Fold  any  lines   AR,  PB,  as  in  Fig.  42,  P  be- 

ing on  AR,  and  B  on  the  edge  of  the  paper.      Fold 

again  so  that  AP  and  PR  may  both  coincide  with  PB. 

Let  PX,  PY  be  the  creases  thus  obtained,  X  and  Y 

being  on  AB. 

Then  the  points  A,  X,  B,  Y  form  an  harmonic 

range.  That  is,  AB  is  divided  internally  in  X  and 

externally  in  Y so  that 

AX:  XB  =  AY:  BY. 

It  is  evident,  that  every  line  cutting  PA,  PX,  PB, 

and  PY  will  be  divided  harmonically. 

R 

116.  Having  given  A,  B,  and  X,  to  find  Y:  fold  any 

line  XPand  mark  ̂ corresponding  to  B.  Fold  AKPR, 

and  BP.      Bisect  the  angle  BPR  by  PY  by  folding 
through  P  so  that  PB  and  ./Iff  coincide. 

Because  XP  bisects  the  angle  APB, 

.-.  AX:  XB  =  AP:  BP, 
=  AY:  BY. 
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117.  AX:  XB  =  AY:  BY 

or  AY—  XY:  XY—BY=AY:  BY. 

Thus,  AY,  XY,  and  BY,  are  an  harmonic  series, 

and  XY  is  the  harmonic  mean  between  AY  and  BY. 

Similarly  AB  is  the  harmonic  mean  between  AX 
and  A  Y 

118.  If  BY  and  XYbe  given,  to  find  the  third  term 

AY,  we  have  only  to  describe  any  right-angled  tri- 

angle on  XYas  the  hypotenuse  and  make  angle  APX 

=  angle  XPB. 

119.  Let  AX=a,  AB  =  b,  and  AY=c. 

or,  c  = 

Then 

b  — 

2ac 

a-\-  c' 

or, ab  + 

bc  = 

2ac 

r  — 

ab b 
2a~d      2-- 

a 

When  a  =  b,  c  =  b. 

When  b  =  2a,  c=  go. 

Therefore  when  X\%  the  middle  point  of  AB,   Y  is 

at  an  infinite  distance  to  the  right  of  B.    Y approaches 

B  as  X  approaches  it,  and  ultimately  the  three  points 
coincide. 

As  X  moves  from   the  middle  of  AB  to  the  left,  Y 

moves  from  an  infinite  distance  on  the  left  towards  A, 

and  ultimately  X,  A,  and  Kcoincide. 

120.   If  E  be  the  middle  point  of  AB, 

EX-  E  Y=  EA*  =  EB? 

for  all  positions  of  Xand  Y  with  reference  to  A  or  B. 
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Each  of  the  two  systems  of  pairs  of  points  X  and 

Y  is  called  a  system  in  involution,  the  point  E  being 

called  the  center  and  A  or  B  the  focus  of  the  system. 

The  two  systems  together  may  be  regarded  as  one 

system. 

121.  AX  and  A  Y  being  given,  B  can  be  found  as 

follows  : 

Produce  XA  and  take  AC=XA. 

Take  D  the  middle  point  of  A  Y. 

Take  CE  =  DA  or  AE=DC. 

F 

A       X       B 
Fig- 43- 

Fold  through  A  so  that  AF  may  be  at  right  angles 
to  CA  Y. 

Find  F  such  that  DF=DC. 

Fold  through  EF  and  obtain  FB,  such  that  FB  is 

at  right  angles  to  EF. 

CD  is  the  arithmetic  mean  between  AX  and  A  Y. 

AF  is  the  geometric  mean  between  AX  and  A  Y. 

AF  \s  also  the  geometric  mean  between  CD  or  AE 
and  AB. 

Therefore  AB  is  the  harmonic  mean  between  AX 

and  AY. 

122.  The   following   is   a  very   simple   method   of 

finding  the  harmonic  mean  between  two  given  lines. 
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Take  AB,  CD  on  the  edges  of  the  square  equal  to 

the  given  lines.  Fold  the  diagonals  AD,  i?Cand  the 

sides  AC,  BD  of  the  trapezoid  ACDB.  Fold  through 

E,  the  point  of  intersection  of  the  diagonals,  so  that 

FEG  may  be  at  right  angles  to  the  other  sides  of  the 

square  or  parallel  to  AB  and  CD.  Let  FEG  cut  AC 
A  B 

Fig.  44. 

and  BD  in  /and  G.    Then  EG  is  the  harmonic  mean 

between  AB  and  CD. 
EE        CE 

~AB~~CB 

EG        EE        EB 

~CB 

For 

and    ̂ „  =  -— —  = 
CD 
EE 

~AB 

1 

+ 
CD 
EE 

CD        CB 

CE       EB 

CB 
2 

^  ̂   CD"  EE"  EG' 
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123.  The  line  HK  connecting  the  mid-points  of  AC 

and  BD  is  the  arithmetic  mean  between  AB  and  CD. 

124.  To  find  the  geometric  mean,  take  HL  in  HK 

=  FG.  Fold  ZJ/at  right  angles  to  HK.  Take  0  the 

mid-point  of  HK  and  find  M  in  LM  so  that  OM=OH 

HM  is  the  geometric  mean  between  AB  and  CD  as  well 

as  between  FG  and  ZTAf.  The  geometric  mean  between 

two  quantities  is  thus  seen  to  be  the  geometric  mean 

between  their  arithmetic  mean  and  harmonic  mean. 

0 A B c D Z F 

a 

b 

c 

d ■ 

e 

f 
Fig.  45- 

SUMMATION  OF  CERTAIN  SERIES. 

125.  To  sum  the  series 

l_(-3-f5..  ..  +  (2«  —  1). 

Divide  the  given  square  into  a  number  of  equal 

squares  as  in  Fig.  45.  Here  we  have  49  squares,  but 

the  number  may  be  increased  as  we  please. 
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The  number  of  squares  will  evidently  be  a  square 

number,  the  square  of  the  number  of  divisions  of  the 

sides  of  the  given  square. 

Let  each  of  the  small  squares  be  considered  as  the 

unit;  the  figure  formed  by  A  4-  0  4-  a  being  called  a 

gnomon. 

The  numbers  of  unit  squares  in  each  of  the  gno- 

mons AOa,  BOb,  etc.,  are  respectively  3,  5,  7,  9, 
11,  13. 

Therefore  the  sum  of  the  series  1,  3,  5,  7,  9,  11, 

13  is  72. 

Generally,  1  +  3  +  5^   _|_  (2n  —  l)  =  n2. 

o 
1 

A 

2. 

B 

3 

C 

4 

D 

5 

E 

fa 

F 

7 
a 

2 4 fa £ 
1  o 

12 14 

la 

3 £> 9 

12. 

IS 

18 

21 
4 8 

12 
lio 

20 
24 

2? d 
5 IO 

IS 

Zo 
2S 

30 

35 
e 

fa 12. 18 24 
30 3fa 

42 
f 
7 

14 

21 
2? 

35 

42    J 

49 Fig.  46. 

126.  To  find   the  sum  of  the  cubes  of  the  first  n 

natural  numbers. 

Fold  the  square  into  49  equal  squares  as  in  the 
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preceding  article,  and  letter  the  gnomons.    Fill  up  the 

squares  with  numbers  as  in  the  multiplication  table. 

The  number  in  the  initial  square  is  1  =  l3. 
The  sums  of  the  numbers  in  the  gnomons  Aa,  Bb, 

etc. ,  are  2  +  4  +  2  =  23,  33,  43,  53,  (53,  and  73. 

The  sum  of  the  numbers  in  the  first  horizontal 

row  is  the  sum  of  the  first  seven  natural  numbers. 

Let  us  call  it  s. 

Then  the  sums  of  the  numbers  in  rows  a,  b,  c,  d, 

etc.,  are 

Is,  3s,  -is,  5j,  6s,  and  7s. 
Therefore  the  sum  of  all  the  numbers  is 

,(l  +  2  +  3  +  4+ 5 +  0  +  7)=  A 

Therefore,  the  sum  of  the  cubes  of  the  first  seven 

natural  numbers  is  equal  to  the  square  of  the  sum  of 

those  numbers. 

Generally,  l3  +  23  +  33... 

=  (1  +  2  +  3.. 

[-*(«+ 1)"12 
.  • .  2,  n6  = 

+  ns 

«)2 For     OO  + l)]2—  [(»— 1)'«]2 

=  („2  +  ny  _  („2  _  „y  _  4„3. 
Putting  n  =  1,  2,  3 ....  in  order,  we  have 

4-l3  =  (l-2)2  —  (0-1)2 

4-23  =  (2-3)2  —  (1-2)2 

4-33  =  (3-4)2  — (2-3V 

4-»3  =[»•(«  +  1)]2—  [(»  — 1)-»]5 
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Adding  we  have 

42«8  =  [«(*  +  l)]» 

•  •  *n  —  [ — 2 — 

127.  If  sn  be  the  sum  of  the  first  n  natural  numbers, 

128.  To  sum  the  series 

1- 2  +  2-3  +  3-4..  ..  +  («— 1)-». 

In  Fig.  46,  the  numbers  in  the  diagonal  commen- 

cing from  1,  are  the  squares  of  the  natural  numbers 
in  order. 

The  numbers  in  one  gnomon  can  be  subtracted 

from  the  corresponding  numbers  in  the  succeeding 

gnomon.      By  this  process  we  obtain 

?r 
-(*-!)» 

n' 

■(«  —  !)" 

+  2[*0_l)  +  0_2)  +  0  —  3)....-fl] 

=  »*  +  („_l)*  +  2[l+ 2. "...  +  («  —  1)] 
=  n2-\-(n—  l)2  +  «(«_  1) 

=  [«_(«_1)]2  +3(«_1)« 

=  1  +3(«— 1)». 

Now   -.-  «3  —  (»—  l)8  =  l  +  3(«— 1)», 

...     (;?_l)3_(^_2)3  =  l+3(„_2)(«_l) 

23  _  13  =  1  +  3.2-1 
13_03  =  l  +  0. 

Hence,  by  addition, 

«a  =  »  +  3[l  -2  +  2-3  +  ..  ..  +  («— !)•«]. 
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Therefore 

1-2  +  2-3.. ..+  (»  — !)•»  = 
fr n       («_!)»(«+ 1). 

129.  To  find  the  sum  of  the  squares  of  the  first  n 
natural  numbers. 

1-2  +  2-3   +(«__ l)-« 

=  22  — 2  +  32  — 3   +  «2  —  n 

=  12  _|_  22  +  32 . .  . .  +  «2  —  ( 1  +  2  +  3 . .  . .  +  «) 

=  l.  +  2*  +  3«....  +  »'-^±I). 
Therefore 

r»_iw«  +  l)      «(«  +  i) 
12  +  22  +  32   +  «2  =  -   ++        —  + 

:»(«+!) 

3 

«  —  l        1. 

— 3  2" 

_«(«  +  l)(2«+l) 
~"  6  ' 

130.  To  sum  the  series 

12 +  32  +  52..  .  .  +  (2«  — l)2. 

.  „s _(„_  1)3  =  ̂ +(»_  1)2  +  »(»_1),  by  §  128, 

=  (2«_1)2  — («  — 1)-«, 

.  • .   by  putting  n  =  l,  2,  3, . .  . . 
13__()3  =  12_0-1 

23  _  p  _  32  _  1-2 

33  — 23  =  52  — 2-3 

«»_(»_  1)3  =  (2«  —  l)2_(«_l)-». 
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Adding,  we  have 

«a  =  12+32^52   +  (2«_1)2 

—  [1-2 +  2 -3 +3 -4   +  (»  —  !)•«]• 

...   12  _{_  32  _j_  52  _  .._|_(2„_1)2 

=  «3  + «3  —  « 

3 

4„3—n       n(2n—l)(2n+l) 



XI.   POLYGONS. 

131.  Find  O  the  center  of  a  square  by  folding  its 

diameters.  Bisect  the  right  angles  at  the  center, 

then  the  half  right  angles,  and  so  on.  Then  we 

obtain   2"  equal   angles   around   the  center,    and   the 

magnitude  of  each  of  the  angles  is  ̂   of  a  right  angle, 

n  being  a  positive  integer.  Mark  off  equal  lengths  on 

each  of  the  lines  which  radiate  from  the  center.  If 

the  extremities  of  the  radii  are  joined  successively, 

we  get  regular  polygons  of  2"  sides. 

132.  Let  us  find  the  perimeters  and  areas  of  these 

polygons.  In  Fig.  47  let  OA  and  OA\  be  two  radii 

at  right  angles  to  each  other.  Let  the  radii  OA2, 

OA-i,  OAiy  etc.,  divide  the  right  angle  A\OA  into  2, 

4,  8 . .  . .  parts.  Draw  A  A],  AA-2,  AA3 ....  cutting  the 

radii  OA2,  OA3,  OA\.  .  .  .at  B\,  B2,  B3.  .  .  .respectively, 

at  right  angles.  Then  B\,  B2,  Bd....are  the  mid- 

points of  the  respective  chords.  Then  AA\,  AA2, 

AA3,  AA\. .  .  .are  the  sides  of  the  inscribed  polygons 

of  22,  23,  24   sides  respectively,  and  OBx,  OB2   

are  the  respective  apothems. 

Let  OA  =  R, 

a  (2")  represent  the  side  of  the  inscribed  polygon 
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of  2"  sides,  ̂ (2")  the  corresponding  apothem,  p{2")  its 

perimeter,  and  A  (2")  its  #raz. 
For  the  square, 

a  (2^)=  By' 2; 

p(2*)=JR-2'2-l/2; 

*(2»)=.f  l/2j 

^(22)=i?2-2. 

0  A, 
Fig-  47- 

For  the  octagon, 

in  the  two  triangles  ABiO  and  AB\A<i 

AB2         OA 
B~{A2  ~  ~  AAi 

.  %AA£=R-BiA*  =  £[R  —  b(2?y\ 

^l^)  =^2 -(2  —  1/2), 

or  ̂ ^2  =  ̂ 1/  2—  i/2=a(23) 

(1) 
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/(2»)  =  i?-2»l/  2  —  i/2      (2) 

t>(23)=OB-2=VOA*  —  AB-P=\R'1  (1 
>f 2  —  1/2 

-=i?-22-l/2  — 1/2  -17?  l/2  +  l/2 

=  ̂ 2-2i/2. 

Similarly  for  the  polygon  of  10  sides, 

a(2*)=i?l/2  — l/2  +  l/2  ; 

/(24)  =  7?-24  'l/2-- 1/2  +  l/2  ; 

*(2*)  =  £  l/2  +  l/2  +  v/2~; 

^(24)  =  7?2-22-l/2  — 1/2  ; 

and  for  the  polygon  of  32  sides, 

a  (25)  =  R  1/2  - 1/2  +  l/2  +  l/2  ; 

/(25)  =  i?-25-  J/  2  — 1/72  +  l/2  +  l/2"; 

=  f^'/2^^/2TW-(3) 
^(23)  =  £  perimeter  X  apothem 

3(2«)=  £  1/2  +  1/2  +  l/2  +  l/2 ; 

A  (25)  =  i?2  •  23  •  i/72  — 1/2  +  l/2~; 
The  general  law  is  thus  clear. 

Also  A(2")  =  *  -/(2"-1). 

As  the  number  of  sides  is  increased  indefinitely 



7° 
GEOMETRIC  EXERCISES 

the  apothem  evidently  approaches  its  limit,  the  ra- 
dius.     Thus  the  limit  of 

is  2; 

1/2  +  l/2  +  \/2. .  . 

for  if  *  represent  the  limit,  x=V'Z-irx,  a  quadratic 
which  gives  x  =  2,  or  — 1;  the  latter  value  is,  of 

course,  inadmissible. 

133-  If  perpendiculars  are  drawn  to  the  radii  at 

their  extremities,  we  get  regular  polygons  circum- 

scribing the  circle  and  also  the  polygons  described  as 

in  the  preceding  article,  and  of  the  same  number  of 
sides. 

C   F   E   G_   D 

In  Fig.  48,  let  AE  be  a  side  of  the  inscribed  poly- 
gon and  FG  a  side  of  the  circumscribed  polygon. 

Then  from  the  triangles  FIE  and  EIO, 

OE         FE  _     FG 

~Ol  ~~  EI  ~A~E'' AE 
FG=  R 

or'
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The  values  of  AE  and  01  being  known  by  the 

previous  article,  FG  is  found  by  substitution. 

The  areas  of  the  two  polygons  are  to  one  another 

as  FG2 :  AE2,  i.  e.,  as  R2 :  OI2. 

134.  In  the  preceding  articles  it  has  been  shown 

how  regular  polygons  can  be  obtained  of  22,  23 . .  . .  2" 

sides.  And  if  a  polygon  of  m  sides  be  given,  it  is  easy 

to  obtain  polygons  of  2"-m  sides. 

135.  In  Fig.  48,  AB  and  CD  are  respectively  the 

sides  of  the  inscribed  and  circumscribed  polygons  of 

n  sides.  Take  E  the  mid  point  of  CD  and  draw  AE, 

BE.  AE  and  BE  are  the  sides  of  the  inscribed  poly- 

gon of  2«  sides. 

Fold  AF,  BG  at  right  angles  to  A  C  and  BD,  meet- 

ing CD  in  F  &n&  G. 

Then  FG  is  a  side  of  the  circumscribed  polygon 

of  2«  sides. 

Draw  OF,  OG  and  OE. 

Let  /,  P  be  the  perimeters  of  the  inscribed  and 

circumscribed  polygons  respectively  of  n  sides,  and 

A,  B  their  areas,  and  p' ,  P'  the  perimeters  of  the  in- 
scribed and  circumscribed  polygons  respectively  of  2n 

sides,  and  A',  B'  their  areas. 
Then 

p  =  n-AB,  P=n-CD,  p'  =  2n-AE,  P'  =  2n-FG. 
Pecause   OF  bisects   /_  COE,   and  AB  is  parallel 

to  CD, 
CF        CO        CO        CD 

FE~    OE'     A0~~  AB' 
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CE        CD+AB 
'"'  ~EE~~~       A~B       ' 

An-CE       n-CD+n-AB 
or 

4n  • 

EE n-AB 

IP P+J> 

P 

P'  = 

2Pp 
'■p+S 

ain, from  th e  sim 

ET 

A~H 

ilar  triangles  EIE 

EE 
~  AE' 

and  A  HE, 

or 
AE2. 

=  2AH-EE; 

.-.   4«2 ■AE2: 

or  /: 

=  4n*-AB-EE, 

=  VpY- 
Now, 

A=2haA0H,    B  =  2haCOE, 

A'  =  2nAA0E,   B'  =  4uaE0E. 

The  triangles  A  OH  and  AOE  are  of  the  same  alti- 
tude, AH, 

A  A OH       OH " ' a AOE 

'  OE' 
Similarly, 

A  AOE 

ACOE 

OA 

'  oc 

Again  because  AB  ||  CD, 

A  A  OH A  AOE 

AAOE         aCOE' 

.-.—  =  —  ,  or  A'  =  VA~B. A        B 

Now  to  find  B' .      Because  the  triangles  COE  and 
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FOE   have   the   same   altitude,    and    OF  bisects   the 

angle  FOC, 

A  COF        CF        0C+  OF 

~L~FOE  ~  FF  ' 

and    0E=0A, 

and 

OF 

OF         i\  A  OF 

OA"  OH     '  A  A  OH  ' 
A  COF        a  A  OF  +  a  A  OH 

AFOF A  A  OH 
9  t>  A' A-  A 

From  this  equation  we  easily  obtain  __  =   T   • 
1  3  B  A      ' 

B'  = 

2AB 

A  +  Ar 

136.  Given  the  radius  R  and  apothem  r  of  a  reg- 

ular polygon,  to  find  the  radius  R  and  apothem  r'  of 
a  regular  polygon  of  the  same  perimeter  but  of  double 
the  number  of  sides. 

Let  AB  be  a  side  of  the  first  polygon,  0  its  center, 

OA  the  radius  of  the  circumscribed  circle,  and  OD 

the  apothem.  On  OD  produced  take  0C=  OA  or 

OB.     Draw  AC,   BC.     Fold    OA'  and    6>i?'  perpen- 
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dicular  to  AC  and  BC  respectively,  thus  fixing  the 

points  A',  B.  Draw  A'B'  cutting  OC  in  D'.  Then 

the  chord  A'B'  is  ha'f  of  AB,  and  the  angle  B'OA'  is 

half  of  BOA.  OA'  and  OD'  are  respectively  the  ra- 

dius R'  and  apothem  r  of  the  second  polygon. 
Now  (9Z>'  is  the  arithmetic  mean  between  OC  and 

OD,  and  OA'  is  the  mean  proportional  between  OC 

and  OD'. 

.-.   r'  =  £0ff+r),   and  R'  =  }/W. 

137.  Now,  take  on  OC,  OE=OA'  and  draw  A'E. 

Then  ̂ 'Z>'  being  less  than  A'C,  and  /  Z>'^'C  being 

bisected  by  A'E, 

ED'  is  less  than  \CD ',  i.  e.,  less  than  \CD 
.-.   Ei — r\  is  less  than  \{R —  r). 

As  the  number  of  sides  is  increased,  the  polygon 

approaches  the  circle  of  the  same  perimeter,  and  R 

and  r  approach  the  radius  of  the  circle. 
That  is, 

R  _|_  r  _|_  R ,  _  r  1  -f  R2  —  r 2  +  . .  . . 

Also, 

=  the  diameter  of  the  circle  = 
71 

R1*  =  Rr1  or  R-  ~  =^1 

-"1 

,  r2        R-2  , 
and  —-  =  -—,  and  so  on. 

R-2       R\ 

Multiplying  both  sides, 

R .  Q-.  £*  .  ̂    =  the  radius  of  the  circle  =  ̂-. 
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138.  The  radius  of  the  circle  lies  between  R„  and 

rn,  the   sides  of  the   polygon   being  4-2"  in   number; 
2  2  .     ,        , 

and  n  lies  between—  and    „  .     The  numerical  value 

of  7t  can  therefore  be  calculated  to  any  required  de- 

gree of  accuracy  by  taking  a  sufficiently  large  number 

of  sides. 

The  following  are  the  values  of  the  radii  and  ap- 

othems  of  the  regular  polygons  of  4,  8,  16.... 2048 

sides. 

4-gon,   r  =  0-500000     R  =  rVY=Q  -707107 

8-gon,  n  =  0  -603553   Rx  =  0-653281 

2048-gon,   r9  =  0-636620    R9  =  0-636620. 

•■■*=<rgJ562o=3-14159-'-- 

139.  If  R"  be  the  radius  of  a  regular  isoperimetric 

polygon  of  4n  sides 

R'2  (R  +  R') R"2  = 2R 

or  in  general 
R> 

140.  The  radii  R\,   R2   successively  diminish, 

1  the  ratio  ——  is  less  tha 
R\ 

cosine  of  a  certain  angle  a. 

D 

and  the  ratio  -^-is  less  than   unity  and  equal  to  the 

Ri 

R>=\
- 

-\-  cos  a  a 

-T-=cos2 
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7-  =  cos 

Rk  2-i 
multiplying  together  the  different  ratios,  we  get 

a  a  a 
Ri+1  =-^1  •cos«-cos  —  •  cos    ̂   ....  cos  ̂ — j- 

(X  Ci 

The  limit  of  cos  a  •  cos  -^  . .  . .  cos     ,_  ,  when  k  =  cc, 
sin  ■in' 

is  — -   ,  a  result  known  as  Euler's  Formula. Za 

141.  It  was  demonstrated  by  Karl  Friedrich  Gauss* 

(1777-1855)  that  besides  the  regular  polygons  of  2", 
3-2",  5-2",  15-2"  sides,  the  only  regular  polygons 
which  can  be  constructed  by  elementary  geometry 

are  those  the  number  of  whose  sides  is  represented 

by  the  product  of  2"  and  one  or  more  different  num- 

bers of  the  form  2"'-f  1.  We  shall  show  here  how 
polygons  of  5  and  17  sides  can  be  described. 

The  following  theorems  are  required  :f 

(1)  If  C  and  D  are  two  points  on  a  semi-circum- 

ference ACDB,  and  if  C  be  symmetric  to  C  with  re- 

spect to  the  diameter  AB,  and  R  the  radius  of  the 
circle, 

AC-BD  =  R-(C'D—CD)   i. 

AD-BC  =  R-(C'D+  CD)   ii. 
AC-BC=R-CC   iii. 

(2)  Let  the  circumference  of  a  circle  be  divided 

into  an  odd  number  of  equal  parts,  and  let  AO  be  the 

*Beman  and  Smith's  translation  of  Fink's  History  of  Mathematics,  p. 

245;  see  also  their  translation  of  Klein's  Famous  Problems  of  Elementary 
Geometry,  pp.  16,  24,  and  their  New  Plane  and  Solid  Geometry,  p.  212. 

t  These  theorems  may  be  found  demonstrated  in  Catalan's  Thtoremes  et 
Problemes  de  Gfome'trie  Elimentaire. 
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diameter  through  one  of  the  points  of  section  A  and 

the  mid-point  0  of  the  opposite  arc.  Let  the  points 

of  section  on  each  side  of  the  diameter  be  named  A\, 

A2,  A3   A„,  and  A\,  A'2,  A'd   A',t  beginning  next 
to  A. 

Then  OAy  OA2-  OA3   OAn  =  En   iv. n 

and  OA1-OA2-OAi   0A„--=R2. 

142.  It  is  evident  that  if  the  chord  0An  is  deter- 

mined, the  angle  AnOA  is  found  and  it  has  only  to  be 

divided  into  2"  equal  parts,  to  obtain  the  other  chords. 

143.  Let  us  first  take  the  pentagon. 

By  theorem  iv, 

OAlOA2  =  JP. 

By  theorem  i, 

R{OAx—  OA2)=  OAx  •  OA2 
JP. 
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...    OA1—OA2  =  R. 

.-.    0A1=~(V/Z  +  1), 

and   C?^2=^(i/5  —  l). 

Hence  the  following  construction. 

Take  the  diameter  A  CO,  and  draw  the  tangent 

AF.  Take  D  the  mid-point  of  the  radius  OC  and 
AF=  OC. 

On  OC  as  diameter  describe  the  circle  AE'CE. 

Join  FD  cutting  the  inner  circle  in  E  and  E' . 

Then  FE'  =  OA,  and  FE=  OA-2. 

144.  Let  us  now  consider  the  polygon  of  seven- 
teen sides. 

Here* 
OAx  ■  OA-2  ■  OA3  ■  OAi  •  OA5  ■  OAe  ■  OA1  •  OA8  =  Rs. 

OAx  ■  OA2  •  OA4  •  OA8  =  R*. 

and   OA3-  OA5-  0A6-  OA7  =  RK 

By  theorems  i.  and  ii. 

OAx  ■  OAA  =  R  ( OA3  +  OA5) 

OA2  •  OA8  =  R  (  OA6  —  OAi) 

OA3-OA*,  =  R(OA2  +  OA8) 

OA6-OAT  =  R(OA1—OAi) 

Suppose 

OA3~\-  OAb  =  M,    OA6—OA7  =  JV, 

OA2+  OA8  =  F,    OAl—OAi  =  Q. 

*The  principal  steps  are  given.  For  a  full  exposition  see  Catalan's  Thio- 
rtmes  et  Problimes  de  GiomUrie  Ettmentaire.  The  treatment  is  given  in  full 

in  Beman  and  Smith's  translation  of  Klein's  Famous  Problems  of  Elementary 
Geometry,  chap.  iv. 
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Then  MJV=R2  and  PQ  =  RK 
Again  by  substituting  the  values  of  M>  N,  P  and 

Q  in  the  formulas 

MJV=R2,    PQ=Ri 

and  applying  theorems  i.  and  ii.  we  get 

(M—N)  —  (P—  Q)  =  R. 

Also  by  substituting  the  values  of  M,  N,  P  and  Q  in 

the  above  formula  and  applying  theorems  i.  and  ii. 
we  get 

(M —  N)  (P—  Q)  =  4R*. 

Hence  M—N,  P—  Q,  M,  N,  P  and  Q  are  deter- 
mined. 

Again 
OA2+  OAs  =  P, 

OA2-OA8  =  RJV. 

Hence  OA%  is  determined. 

145.   By  solving  the  equations  we  get 

P-Q=iR(— 1  +  1/17). 

P=\R{—  1  +  t/17  +  i/34  —  2\/\l) 

JV=  lR(—\  — 1/17  +l/34  +  21/17) 

OA8  =  lR[—  l+i/l7  +  t/34  —  21/17 

—  2  i/l7+3i/17+  l/l70— 26i/17  —  4  j/34+2^W] 

=  £i?  [—  1  +  l/T7  + 1/34  —  2  K17 

—  21/17  +  31   17  —  l/l70  +  38|/l7]. 
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146.  The  geometric  construction  is  as  follows : 

Let  BA  be  the  diameter  of  the  given  circle ;    O  its 

center.    Bisect  OA  in  C.    Draw  AD  at  right  angles  to 

OA  and  take  AD  =  AB.     Draw  CD.     Take  E  and  E 

in  CD  and  on  each  side  of  C  so  that  CE  =  CE'  =  CA. 

B 

Fig.  51. 

Bisect  ED  in  G  and  E'D  in  G '.  Draw  DF  per- 
pendicular to  CD  and  take  DF=  OA. 

Draw  7^6  and  i^c9'. 

Take  H  in  /^Y?  and  ZT  in  EG'  produced  so  that 

Gil  =  EG  and  G'H'  =  G'D. 
Then  it  is  evident  that 

DE  =  M—  IV, 
DE'=F—Q; 
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also 

EH=  N,    • .  ■  (DE  +  AXf)  ZZf =  Z>Z2  =  E2  ; 

EH'  =  F,    • .  •  (EH'  —  DE')  EH=  DE2  =  E2. 
Again  in  HE  take  K  such  that  EE=EH 

Draw  KL  perpendicular  to  DE  and  take  L  in  A^Z 
such  that  EL  is  perpendicular  to  DL. 

Then  FL2  =  DF-FK=EN. 

Again  draw  H'N  perpendicular  to  EH'  and  take 

H'N=FL.     Draw  iVJZ  perpendicular  to  NH' .     Find 

J/"  in  NM  such  that  7/' J/  is  perpendicular  to  EM. 
Draw  J/Z'  perpendicular  to  EH'. 

Then 

Z'Zf'  •  EF'  =  F'M2  =  EL2 
=  EN. 

But  FF'  -\-E'H'=F. 
.-.    F'F=OA8. 



XII.  GENERAL  PRINCIPLES. 

147.  In  the  preceding  pages  we  have  adopted  sev- 

eral processes,  e.  g.,  bisecting  and  trisecting  finite 

lines,  bisecting  rectilineal  angles  and  dividing  them 

into  other  equal  parts,  drawing  perpendiculars  to  a 

given  line,  etc.  Let  us  now  examine  the  theory  of 

these  processes. 

y  148.  The  general  principle  is  that  of  congruence. 

Figures  and  straight  lines  are  said  to  be  congruent,  if 

they  are  identically  equal,  or  equal  in  all  respects. 

In  doubling  a  piece  of  paper  upon  itself,  we  ob- 

tain the  straight  edges  of  two  planes  coinciding  with 

each  other.  This  line  may  also  be  regarded  as  the 

intersection  of  two  planes  if  we  consider  their  posi- 

tion during  the  process  of  folding. 

In  dividing  a  finite  straight  line,  or  an  angle  into  a 

number  of  equal  parts,  we  obtain  a  number  of  con- 

gruent parts.  Equal  lines  or  equal  angles  are  con- 

gruent. 

149.  Let  X'X  be  a  given  finite  line,  divided  into 

any  two  parts  by  A' .  Take  O  the  mid-point  by  doub- 

ling the  line  on  itself.    Then  OA'  is  half  the  difference 
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between  A'X  and  X'A'.  Fold  X'X  over  0,  and  take 

A  in  OX  corresponding  to  A'.  Then  A  A'  is  the  differ- 

ence between  A'X  and  X'^4'  and  it  is  bisected  in  0. 

I   1   1   1   1 
X'  A'  0  A  X 

Fig.  52. 

As  A'  is  taken  nearer  O,  A' O  diminishes,  and  at  the 

same  time  A' A  diminishes  at  twice  the  rate.  This 

property  is  made  use  of  in  finding  the  mid-point  of  a 

line  by  means  of  the  compasses. 

150.  The  above  observations  apply  also  to  an 

angle.  The  line  of  bisection  is  found  easily  by  the 

compasses  by  taking  the  point  of  intersection  cf  two 

circles. 

151.  In   the   line   X'X,    segments   to   the   right   of 
O  may  be  considered  positive  and  segments  to  the 

left   of   O  may  be  considered   negative.      That   is,    a 

point  moving  from  O  to  A   moves  positively,  and  a 

point   moving   in   the   opposite   direction   OA'  moves 
negatively. 

AX=  OX—  OA. 

OA'=OX'  —  A'X', 

both  members  of  the  equation  being  negative.* 

152.  If  OA,  one  arm  of  an  angle  A  OP,  be  fixed  and 

OP  be  considered  to  revolve  round  O,  the  angles 

which  it  makes  with  OA  are  of  different  magnitudes. 

♦See  Beman  and  Smith's  New  Plane  and  Solid  Geometry,  p.  56. 
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All  such  angles  formed  by  OP  revolving  in  the  direc- 

tion opposite  to  that  of  the  hands  of  a  watch  are  re- 

garded positive.  The  angles  formed  by  OP  revolving 

in  an  opposite  direction  are  regarded  negative.* 

153.  After  one  revolution,  OP  coincides  with  OA. 

Then  the  angle  described  is  called  a  perigon,  which 

evidently  equals  four  right  angles.  When  OP  has 

completed  half  the  revolution,  it  is  in  a  line  with 

OAB.  Then  the  angle  described  is  called  a  straight 

angle,  which  evidently  equals  two  right  angles. f 

When  OP  has  completed  quarter  of  a  revolution,  it  is 

perpendicular  to  OA.  All  right  angles  are  equal  in 

magnitude.  So  are  all  straight  angles  and  all  peri- 

gons. 

154.  Two  lines  at  right  angles  to  each  other  form 

four  congruent  quadrants.  Two  lines  otherwise  in- 

clined form  four  angles,  of  which  those  vertically  op- 

posite are  congruent. 

155.  The  position  of  a  point  in  a  plane  is  deter- 

mined by  its  distance  from  each  of  two  lines  taken  as 

above.  The  distance  from  one  line  is  measured  par- 

allel to  the  other.  In  analytic  geometry  the  proper- 

ties of  plane  figures  are  investigated  by  this  method. 

The  two  lines  are  called  axes;  the  distances  of  the 

point  from  the  axes  are  called  co-ordinates,  and  the 

intersection   of  the  axes  is  called   the   origin.      This 

*  See  Beman  and  Smith's  New  Plane  and  Solid  Geometry,  p.  56. 
t/*.,p.  5. 
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method  was  invented  by  Descartes  in  1637  A.  D.*     It 

has  greatly  helped  modern  research. 

156.  If  X'X,  YY'  be  two  axes  intersecting  at  O, 
distances  measured  in  the  direction  of  OX,  i.  e.,  to 

the  right  of  O  are  positive,  while  distances  measured 

to  the  left  of  O  are  negative.  Similarly  with  reference 

to  YY',  distances  measured  in  the  direction  of  OY  are 
positive,  while  distances  measured  in  the  direction  of 

OY'  are  negative. 

j  157.  Axial  symmetry  is  defined  thus  :  If  two  fig- 

ures in  the  same  plane  can  be  made  to  coincide  by 

turning  the  one  about  a  fixed  line  in  the  plane  through 

a  straight  angle,  the  two  figures  are  said  to  be  sym- 

metric with  regard  to  that  line  as  axis  of  symmetry. \ 

\y  158.  Central  symmetry  is  thus  defined  :  If  two  fig- 

ures in  the  same  plane  can  be  made  to  coincide  by 

turning  the  one  about  a  fixed  point  in  that  plane 

through  a  straight  angle,  the  two  figures  are  said  to 

be  symmetric  with  regard  to  that  point  as  center  of 

symmetry.  J 

In  the  first  case  the  revolution  is  outside  the  given 

plane,  while  in  the  second  it  is  in  the  same  plane. 

If  in  the  above  two  cases,  the  two  figures  are  halves 

of  one  figure,  the  whole  figure  is  said  to  be  symmetric 

with  regard  to  the  axis  or  center — these  are  called  axis 

or  center  of  symmetry  or  simply  axis  or  center. 

*Beman  and  Smith's  translation  of  Fink's  History  of  Mathematics,  p.  230. 
tBeman  and  Smith's  New  Plane  and  Solid  Geometry,  p.  26. 
t/5.,p.i83. 
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j  159.  Now,  in  the  quadrant  XOY  make  a  triangle 

PQR.  Obtain  its  image  in  the  quadrant  YOX'  by 

folding  on  the  axis  YY'  and  pricking  through  the 
paper  at  the  vertices.  Again  obtain  images  of  the  two 

triangles  in  the  fourth  and  third  quadrants.  It  is  seen 

that  the  triangles  in  adjacent  quadrants  posses  axial 

Fig-  53- 

symmetry,  while  the  triangles  in  alternate  quadrants 

possess  central  symmetry. 

160.  Regular  polygons  of  an  odd  number  of  sides 

possess  axial  symmetry,  and  regular  polygons  of  an 

even  number  of  sides  possess  central  symmetry  as 

well. 
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161.  If  a  figure  has  two  axes  of  symmetry  at  right 

angles  to  each  other,  the  point  of  intersection  of  the 

axes  is  a  center  of  symmetry.  This  obtains  in  reg-  f^ 

ular  polygons  of  an  even  number  of  sides  and  certain 

curves,  such  as  the  circle,  ellipse,  hyperbola,  and  the 

lemniscate ;  regular   polygons   of  an   odd   number  of 

Fig.  54- 

sides  may  have  more  axes  than  one,  but  no  two  of 

them  will  be  at  right  angles  to  each  other.  If  a  sheet 

of  paper  is  folded  double  and  cut,  we  obtain  a  piece 

which  has  axial  symmetry,  and  if  it  is  cut  fourfold,  we 

obtain  a  piece  which  has  central  symmetry  as  well,  as 

in  Fig.  54. 
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162.  Parallelograms  have  a  center  of  symmetry. 

A  quadrilateral  of  the  form  of  a  kite,  or  a  trapezium 

with  two  opposite  sides  equal  and  equally  inclined  to 

either  of  the  remaining  sides,  has  an  axis  of  sym- 

metry. 

163.  The  position  of  a  point  in  a  plane  is  also  de- 

termined by  its  distance  from  a  fixed  point  and  the 

inclination  of  the  line  joining  the  two  points  to  a  fixed 

line  drawn  through  the  fixed  point. 

If  OA  be  the  fixed  line  and  P  the  given  point,  the 

length  OP  and  /_AOP,  determine  the  position  of  P. 

Fig.  55- 

O  is  called  the  pole,  OA  the  prime-vector,  OP  the 

radius  vector,  and  l_AOP  the  vectorial  angle.  OP 

and  /  A  OP  are  called  polar  co-ordinates  of  P. 

164.  The  image  of  a  figure  symmetric  to  the  axis 

OA  may  be  obtained  by  folding  through  the  axis  OA. 

The  radii  vectores  of  corresponding  points  are  equally 

inclined  to  the  axis. 

165.  Let  ABC  be  a  triangle.  Produce  the  sides 

CA,  AB,  BC  to  D,  E,  F  respectively.  Suppose  a 

person  to  stand  at  A  with  face  towards  D  and  then  to 
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proceed  from  A  to  B,  B  to  C,  and  C  to  A.  Then  he 

successively  describes  the  angles  DAB,  EBC,  FCD. 

Having  come  to  his  original  position  A,  he  has  com- 

Fig.  56. 

pleted  a  perigon,  i.  e.,  four  right  angles.  We  may 

therefore  infer  that  the  three  exterior  angles  are  to- 

gether equal  to  four  right  angles. 

The  same  inference  applies  to  any  convex  polygon. 

161.  Suppose  the  man  to  stand  at  A  with  his  face 

towards  C,  then  to  turn  in  the  direction  of  AB  and 

proceed  along  AB,  BC,  and  CA. 

In  this  case,  the  man  completes  a  straight  angle, 

i.  e.,  two  right  angles.  He  successively  turns  through 

the  angles  CAB,  EBC,  and  FCA.  Therefore  /_EBF 

+  /  FCA  -f  /  CAB  (neg.  angle)  =  a  straight  angle. 
This  property  is  made  use  of  in  turning  engines 

on  the  railway.  An  engine  standing  upon  DA  with 

its  head  towards  A  is  driven  on  to  CF,  with  its  head 

towards  F.  The  motion  is  then  reversed  and  it  goes 

backwards  to  EB.  Then  it  moves  forward  along  BA 

on   to  AD.     The  engine  has  successively  described 
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the  angles  ACB,  CBA,  and  BAC  Therefore  the 

three  interior  angles  of  a  triangle  are  together  equal 

to  two  right  angles. 

167.  The  property  that  the  three  interior  angles  of 

a  triangle  are  together  equal  to  two  right  angles  is 

illustrated  as  follows  by  paper  folding. 

Fold  CC  perpendicular  to  AB.  Bisect  C'B  in  N, 

and  AC  in  M.  Fold  NA' ,  MB'  perpendicular  to  AB, 

meeting  BC  and  AC  in  A'  and  B\    Draw  A'C,  B'C. 

c 

1 

\      ' 

By 

,A 

M  C      IN 
Fig.  57- 

B 

By  folding  the  corners  on  NA' ,  MB'  and  A'B',  we 
find  that  the  angles  A,  B,  C  of  the  triangle  are  equal 

to  the  angles  B'C  A,  BCA',  and  A' C'B'  respectively, 
which  together  make  up  two  right  angles. 

168.  Take  any  line  ABC.  Draw  perpendiculars 

to  ABC  at  the  points  A,  B,  and  C.  Take  points 

D,  E,  j^in  the  respective  perpendiculars   equidistant 
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from  their  feet.  Then  it  is  easily  seen  by  superposi- 

tion and  proved  by  equal  triangles  that  DE  is  equal 

to  AB  and  perpendicular  to  AD  and  BE,  and  that 

EE  is  equal  to  BC  and  perpendicular  to  BE  and  CF. 

Now  AB  (=DE)  is  the  shortest  distance  between  the 

lines  AD  and  BE,  and  it  is  constant.     Therefore  AD 

Fig.  58. 

and  BE  can  never  meet,  i.  e.,  they  are  parallel.  Hence 

lines  which  are  perpendicular  to  the  same  line  are 

parallel. 

The  two  angles  BAD  and  EBA  are  together  equal 

to  two  right  angles.  If  we  suppose  the  lines  AD  and 

BE  to  move  inwards  about  A  and  B,  they  will  meet 

and  the  interior  angles  will  be  less  than  two  right 

angles.  They  will  not  meet  if  produced  backwards. 

This  is  embodied  in  the  much  abused  twelfth  postulate 

of  Euclid's  Elements.* 

169.  If  AGHbe  any  line  cutting  BE  in  G  and  CF 

in  H,  then 

*  For  historical   sketch   see   Beman   and    Smith's   translation  of  Fink's 
History  of  Mathematics,  p.  270. 
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/_  GAD  =  the  alternate  /_AGB, 

• .-  each  is  the  complement  of  /_BAG;  and 

/_HGE  =  the  interior  and  opposite  /  GAD. 

.  • .   they  are  each  =  /_AGB. 
Also  the  two  angles  GAD  and  EGA  are  together 

equal  to  two  right  angles. 

170.  Take  a  line  AX  and  mark  off  on  it,  from  A, 

equal  segments  AB,  BC,  CD,  Z>is ...  .Erect  perpen- 

diculars to  AE  at  B,  C,  D,  E . .  . .  Let  a  line  AF'  cut 

the  perpendiculars  in  B',  C,  D,  E' ...  .Then  A  B', 

B'C,  CD,  D'E' ..  . .  are  all  equal. 

If  AB,  BC,  CD,  DE  be  unequal,  then 

AB:BC=AB':B'C 

BC:  CD  =  B'C:  CD,  and  so  on. 

171.  If  ABCDE . ...  be  a  polygon,  similar  polygons 

may  be  obtained  as  follows. 

Take  any  point  0  within  the  polygon,  and  draw 

OA,    OB,    OC,.... 

Take  any  point  A'  in  OA  and  draw  A'B',  B'C, 

CD',   parallel    to    AB,    BC,    CD   respectively. 
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Then  the  polygon  A'B'C'D'. .  .  .will  be  similar  to 
A  BCD . .  . .  The  polygons  so  described  around  a  com- 

mon point  are  in  perspective.  The  point  O  may  also 

lie  outside  the  polygon.  It  is  called  the  center  of  per- 

spective. 

172.  To  divide  a  given  line  into  2,  3,  4,  5. .  .  .equal 

parts.     Let  AB  be   the  given  line.      Draw  AC,   BD 

at  right  angles  to  AB  on  opposite  sides  and  make 

AC=BD.  Draw  CD  cutting  AB  in  P*.  Then  AP2 

=  P2B. 

Now    produce  AC  and   take   C£  =  EF=FG . .  . . 

=  AC  or  BD.     Draw  DE,  DF,  DG   cutting  AB 

in  Ps,   Pt,   P6,.... 

Then  from  similar  triangles, 

P3B:AP3  =  BD:A£. 
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.-.  P3B:  AB  =  BD:  AF 
=  1:3. 

Similarly 

PiB:AB  =  l  :4, 
and  so  on. 

If  AB  =  1, 

A*  =  ±l 
■p*p*  =  2^i 

FsFi  =  3-4 ; 

PnPn+l=        1 
n{n+  1) 

But  A  Pi  +  P2Ps  +  PsPi  +   is  ultimately  ==  AB. 

•'•li2  +  2^  +  3ii+----tOCO=;=L 

Or 

1-i-.1 2"     1-2' 
1        1  1 

¥""  3  ="2"3' 

1  1  1 

«        n  -\-\       n{n  -f-  1) 

Adding 

11  1.1 

1-2^2-3^  ^ 
1 

« 
(.«-}- 1)  »+l 
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11  1     1 

'*'  1-2  +  2^3  "  •  ' "  +  («— 1)«  ~         "»' 
The  limit  of  1   when  »  is  00  is  1. 

n 

173.  The  following  simple  contrivance  may  be 

used  for  dividing  a  line  into  a  number  of  equal  parts. 

Take  a  rectangular  piece  of  paper,  and  mark  off  n 

equal  segments  on  each  or  one  of  two  adjacent  sides. 

Fold  through  the  points  of  section  so  as  to  obtain 

perpendiculars  to  the  sides.  Mark  the  points  of  sec- 

tion and  the  corners  0,  1,  2, . .  . .  n.  Suppose  it  is  re- 

quired to  divide  the  edge  of  another  piece  of  paper 

AB  into  n  equal  parts.  Now  place  AB  so  that  A  or 

B  may  lie  on  0,  and  B  or  A  on  the  perpendicular 

through  n. 

In  this  case  AB  must  be  greater  than  ON.  But 

the  smaller  side  of  the  rectangle  may  be  used  for 
smaller  lines. 

The  points  where  AB  crosses  the  perpendiculars 

are  the  required  points  of  section. 

174.  Center  of  mean  position.  If  a  line  AB  con- 

tains (m-\-ii)  equal  parts,  and  it  is  divided  at  C  so 

that  AC  contains  m  of  these  parts  and  CB  contains  n 

of  them  ;  then  if  from  the  points  A,  C,  B  perpendicu- 

lars AD,  CF,  BE  be  let  fall  on  any  line, 

m  ■  BE  -f  n  ■  AD  =  (m  -f  n)  ■  CF. 

Now,  draw  BGH  parallel  to  ED  cutting  CF  in  G 

and  AD  in  H.      Suppose  through  the  points  of  divi- 

sion AB  lines  are  drawn  parallel  to  BH.      These  lines 



96  GEOMETRIC  EXERCISES 

will  divide  AH  into  (m-\-n)  equal  parts  and  CG  into 

n  equal  parts. 

.  • .  n  •  AH=  {in  -\-  ri)  •  CG, 

and  since  DH  and  BE  are  each  —  GF, 

n-HD  +  m-BE=fm  +  *)OF. 
Hence,  by  addition 

n- 1  -f  D  +  m-BE  =  (in  -f  //)  6^^ 

n-A£>  +  m-BE  =  {m  +  «)  ■  C/^. 

C  is  called  the  center  of  mean  position,  or  the 

mean  center  of  A  and  i?  for  the  system  of  multiples 

m  and  n. 

The  principle  can  be  extended  to  any  number  of 

points,  not  in  a  line.  Then  if  P  represent  the  feet  of 

the  perpendiculars  on  any  line  from  A,  B,  C,  etc.,  if 

a,  b,  c...  be  the  corresponding  multiples,  and  if  M 
be  the  mean  center 

a-AP+b-BP+c-CP   

=  {a-\-b  +  c-\-..  ..)-MP. 
If  the  multiples  are  all  equal  to  a,  we  get 

a(AP+BP^-CP+..  ..)=na-MP 
n  being  the  number  of  points. 

175.  The  center  of  mean  position  of  a  number  of 

points  with  equal  multiples  is  obtained  thus.  Bisect 

the  line  joining  any  two  points  A,  B  in  G,  join  G  to  a 

third  point  C  and  divide  GC  in  H  so  that  GH=\GC; 

join  H  to  a  fourth  point  D  and  divide  HD  in  K  so  that 

HK=\HD  and  so  on:  the  last  point  found  will  be 

the  center  of  mean  position  of  the  system  of  points. 
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176.  The  notion  of  mean  center  or  center  of  mean 

position  is  derived  from  Statics,  because  a  system  of 

material  points  having  their  weights  denoted  by  a,  b, 

c . .  . . ,  and  placed  at  A,  B,  C. .  . .  would  balance  about 

the  mean  center  M,  if  free  to  rotate  about  M  under 

the  action  of  gravity. 

The  mean  center  has  therefore  a  close  relation  to 

the  center  of  gravity  of  Statics. 

177.  The  mean  center  of  three  points  not  in  a  line, 

is  the  point  of  intersection  of  the  medians  of  the  tri- 

angle formed  by  joining  the  three  points.  This  is  also 

the  center  of  gravity  or  mass  center  of  a  thin  tri- 

angular plate  of  uniform   density. 

178.  If  M  is  the  mean  center  of  the  points  A,  B, 

C,  etc.,  for  the  corresponding  multiples  a,  b,  c,  etc., 

and  if  P  is  any  other  point,  then 

a-AP2^-b-BP2  +  c-CP2  +  ..  .. 

=  a-AM2  +  b-BAP  +  c-CM2  +  . .  . . 

Hence  in  any  regular  polygon,  if  O  is  the  in-center 

or  circum-center  and  P  is  any  point 

AP2  +  BP2  +   =  OA2  +  OB2  +   +  n-  OP2 

=  ?r(P2-\-  OP2). 
Now 

AB2-\-AC2-\-A£>2+..  ..  =  2n-P2. 
Similarly 

BA2  +  BC2  +  BD2  +  ..  ..  =  2n-R2 

CA2  +  CB2  -f  CD2  +  . .  . .  =2«i?2. 



98  GEOMETRIC  EXERCISES 

Adding 

2(AB2  +  AC2  +  A£>2  +   )  =  n-2n-P2. 

.-.   AB2  +  AC2-\-AD2-\-..  ..  =  n2-B2. 

179.  The  sum  of  the  squares  of  the  lines  joining 

the  mean  center  with  the  points  of  the  system  is  a 

minimum. 

If  Afbe  the  mean  center  and  P  any  other  point 

not  belonging  to  the  system, 

2PA2  =  2MA2+2PM2,  (where  2  stands  for  "the 

sum  of  all  expressions  of  the  type"). 

.-.  2 PA'2  is  the  minimum  when  PM=0,  i.  e., 
when  P  is  the  mean  center. 

180.  Properties   relating  to  concurrence  of  lines 

and  collinearity  of  points  can  be  tested  by  paper  fold- 

ing.*    Some  instances  are  given  below: 

(1)  The  medians  of  a  triangle  are  concurrent.  The 

common  point  is  called  the  centroid. 

(2)  The  altitudes  of  a  triangle  are  concurrent 

The  common  point  is  called  the  orthocenter. 

(3)  The  perpendicular  bisectors  of  the  sides  of  a 

triangle  are  concurrent.  The  common  point  is  called 

the  circum-center. 

(4)  The  bisectors  of  the  angles  of  a  triangle  are 

concurrent.   The  common  point  is  called  the  in-center. 

(5)  Let  ABCD  be  a  parallelogram  and  P  any 

point.     Through  P  draw  GH  and  EF  parallel  to  BC 

*For  treatment  of  certain  of  these  properties  see  Beman  and  Smith's 
New  Plane  and  Solid  Geometry,  pp.  84,  182. 
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and  AB  respectively.     Then  the  diagonals  EG,  HF, 
and  the  line  DB  are  concurrent. 

(6)  If  two  similar  unequal  rectineal  figures  are  so 

placed  that  their  corresponding  sides  are  parallel,  then 

the  joins  of  corresponding  corners  are  concurrent. 

The  common  point  is  called  the  center  of  similarity. 

(7)  If  two  triangles  are  so  placed  that  their  corners 

are  two  and  two  on  concurrent  lines,  then  their  corre- 

sponding sides  intersect  collinearly.  This  is  known 

as  Desargues's  theorem.  The  two  triangles  are  said 
to  be  in  perspective.  The  point  of  concurrence  and 

line  of  collinearity  are  respectively  called  the  center 

and  axis  of  perspective. 

(8)  The  middle  points  of  the  diagonals  of  a  com- 

plete quadrilateral  are  collinear. 

(9)  If  from  any  point  on  the  circumference  of  the 

circum-circle  of  a  triangle,  perpendiculars  are  dropped 
on  its  sides,  produced  when  necessary,  the  feet  of 

these  perpendiculars  are  collinear.  This  line  is  called 

Simson's  line. 

Simson's  line  bisects  the  join  of  the  orthocenter 
and  the  point  from  which  the  perpendiculars  are 
drawn. 

(10)  In  any  triangle  the  orthocenter,  circum-center, 
and  centroid  are  collinear. 

The  mid-point  of  the  join  of  the  orthocenter  and 

circum-center  is  the  center  of  the  nine-points  circle,  so 

called  because  it  passes  through  the  feet  of  the  alti- 

tudes and  medians  of  the  triangle  and  the  mid-point 



ioo  GEOMETRIC  EXERCISES 

of  that  part  of  each  altitude  which  lies  between  the 

orthocenter  and  vertex. 

The  center  of  the  nine-points  circle  is  twice  as  far 
from  the  orthocenter  as  from  the  centroid.  This  is 

known  as  Poncelet's  theorem. 

(11)  If  A,  B,  C,  D,  £,  B,  are  any  six  points  on  a 

circle  which  are  joined  successively  in  any  order,  then 

the  intersections  of  the  first  and  fourth,  of  the  second 

and  fifth,  and  of  the  third  and  sixth  of  these  joins  pro- 

duced when  necessary)  are  collinear.  This  is  known 

as  Pascal's  theorem. 

(12)  The  joins  of  the  vertices  of  a  triangle  with  the 

points  of  contact  of  the  in-circle  are  concurrent.  The 

same  property  holds  for  the  ex  circles. 

(13)  The  internal  bisectors  of  two  angles  of  a  tri- 

angle, and  the  external  bisector  of  the  third  angle  in- 

tersect the  opposite  sides  collinearly. 

(14)  The  external  bisectors  of  the  angles  of  a  tri- 

angle intersect  the  opposite  sides  collinearly. 

(15)  If  any  point  be  joined  to  the  vertices  of  a 

triangle,  the  lines  drawn  through  the  point  perpen- 

dicular to  those  joins  intersect  the  opposite  sides  of 

the  triangle  collinearly. 

(16)  If  on  an  axis  of  symmetry  of  the  congruent 

triangles  ABC,  A'B'C  a  point  O  be  taken  A'O,  B'O, 
and  CO  intersect  the  sides  BC,  CA  and  AB  collin- 

early. 

(17)  The  points  of  intersection  of  pairs  of  tangents 

to  a  circle  at  the  extremities  of  chords  which  pass 
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through  a  given  point  are  collinear.   This  line  is  called 

the  polar  of  the  given  point  with  respect  to  the  circle. 

(18)  The  isogonal  conjugates  of  three  concurrent 

lines  AX,  BX,  CX  with  respect  to  the  three  angles  of 

a  triangle  ABC  are  concurrent.  (Two  lines  AX,  AY 

are  said  to  be  isogonal  conjugates  with  respect  to  an 

angle  BAC,  when  they  make  equal  angles  with  its 

bisector.) 

(19)  If  in  a  triangle  ABC,  the  lines  AA' ,  BB',  CC 
drawn  from  each  of  the  angles  to  the  opposite  sides 

are  concurrent,  their  isotomic  conjugates  with  respect 

to  the  corresponding  sides  are  also  concurrent.  (The 

lines  AA',  AA"  are  said  to  be  isotomic  conjugates, 
with  respect  to  the  side  BC  of  the  triangle  ABC,  when 

the  intercepts  BA'  and  CA"  are  equal.) 

(20)  The  three  symmedians  of  a  triangle  are  con- 
current. (The  isogonal  conjugate  of  a  median  AM  of 

a  triangle  is  called  a  symmedian.) 



XIII.  THE  CONIC  SECTIONS. 

SECTION  I.— THE  CIRCLE. 

181.  A  piece  of  paper  can  be  folded  in  numerous 

ways  through  a  common  point.  Points  on  each  of  the 

lines  so  taken  as  to  be  equidistant  from  the  common 

point  will  lie  on  the  circumference  of  a  circle,  of  which 

the  common  point  is  the  center.  The  circle  is  the 

locus  of  points  equidistant  from  a  fixed  point,  the 

centre. 

182.  Any  number  of  concentric  circles  can  be 

drawn.     They  cannot  meet  each  other. 

183.  The  center  may  be  considered  as  the  limit  of 

concentric  circles  described  round  it  as  center,  the 

radius  being  indefinitely  diminished. 

184.  Circles  with  equal  radii  are  congruent  and 

equal. 

185.  The  curvature  of  a  circle  is  uniform  through- 
out the  circumference.  A  circle  can  therefore  be  made 

to  slide  along  itself  by  being  turned  about  its  center. 

Any  figure  connected  with  the  circle  may  be  turned 

about  the  center  of  the  circle  without  changing  its  re- 
lation to  the  circle. 
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186.  A  straight  line  can  cross  a  circle  in  only  two 

points. 

187.  Every  diameter  is  bisected  at  the  center  of 

the  circle.  It  is  equal  in  length  to  two  radii.  All 

diameters,  like  the  radii,  are  equal. 

188.  The  center  of  a  circle  is  its  center  of  sym- 

metry, the  extremities  of  any  diameter  being  corre- 

sponding points. 

189.  Every  diameter  is  an  axis  of  symmetry  of  the 

circle,  and  conversely. 

190.  The  propositions  of  §§  188,  189  are  true  for 

systems  of  concentric  circles. 

191.  Every  diameter  divides  the  circle  into  two 

equal  halves  called  semicircles. 

192.  Two  diameters  at  right  angles  to  each  other 

divide  the  circle  into  four  equal  parts  called  quadrants. 

193.  By  bisecting  the   right   angles   contained   by 

the  diameters,  then  the  half  right  angles,  and  so  on, 

we  obtain  2"  equal  sectors  of  the  circle.      The  angle 4 

between  the  radii  of  each  sector  is  -^  of  a  right  angle 

2tt  _    ̂ t_ 
 * 

or   2^  —  2»-i' 

194.  As  shown  in  the  preceding  chapters,  the  right 

angle  can  be  divided  also  into  3,  5,  9,  10,  12,  15  and 

17  equal  parts.      And  each  of  the  parts  thus  obtained 

can  be  subdivided  into  2"  equal  parts. 
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195.  A  circle  can  be  inscribed  in  a  regular  polygon, 

and  a  circle  can  also  be  circumscribed  round  it.  The 

former  circle  will  touch  the  sides  at  their  mid-points. 

196.  Equal  arcs  subtend  equal  angles  at  the  cen- 

ter; and  conversely.  This  can  be  proved  by  super- 

position. If  a  circle  be  folded  upon  a  diameter,  the 

two  semicircles  coincide.  Every  point  in  one  semi- 

circumference  has  a  corresponding  point  in  the  other, 

below  it. 

197.  Any  two  radii  are  the  sides  of  an  isosceles  tri- 

angle, and  the  chord  which  joins  their  extremities  is 

the  base  of  the  triangle. 

198.  A  radius  which  bisects  the  angle  between  two 

radii  is  perpendicular  to  the  base  chord  and  also  bi- 
sects it. 

199.  Given  one  fixed  diameter,  any  number  of 

pairs  of  radii  may  be  drawn,  the  two  radii  of  each  set 

being  equally  inclined  to  the  diameter  on  each  side  of 

it.  The  chords  joining  the  extremities  of  each  pair  of 

radii  are  at  right  angles  to  the  diameter.  The  chords 

are  all  parallel  to  one  another. 

200.  The  same  diameter  bisects  all  the  chords  as 

well  as  arcs  standing  upon  the  chords,  i.  e.,  the  locus 

of  the  mid-points  of  a  system  of  parallel  chords  is  a 
diameter. 

201.  The  perpendicular  bisectors  of  all  chords  of  a 

circle  pass  through  the  center. 



IN  PAPER  FOLDING  105 

202.  Equal  chords  are  equidistant  from  the  center. 

203.  The  extremities  of  two  radii  which  are  equally 

inclined  to  a  diameter  on  each  side  of  it,  are  equi- 

distant from  every  point  in  the  diameter.  Hence,  any 

number  of  circles  can  be  described  passing  through 

the  two  points.  In  other  words,  the  locus  of  the  cen- 

ters of  circles  passing  through  two  given  points  is  the 

straight  line  which  bisects  at  right  angles  the  join  of 

the  points. 

204.  Let  CC  be  a  chord  perpendicular  to  the  ra- 

dius OA.  Then  the  angles  A  OC  and  AOC  are  equal. 

Suppose  both  move  on  the  circumference  towards  A 

with  the  same  velocity,  then  the  chord  CC  is  always 

parallel  to  itself  and  perpendicular  to  OA.  Ultimately 

the  points  C,  A  and  C  coincide  at  A,  and  CAC  is 

perpendicular  to  OA.  A  is  the  last  point  common  to 

the  chord  and  the  circumference.  CAC  produced 

becomes  ultimately  a  tangent  to  the  circle. 

205.  The  tangent  is  perpendicular  to  the  diameter 

through  the  point  of  contact;  and  conversely. 

206.  If  two  chords  of  a  circle  are  parallel,  the  arcs 

joining  their  extremities  towards  the  same  parts  are 

equal.  So  are  the  arcs  joining  the  extremities  of  either 

chord  with  the  diagonally  opposite  extremities  of  the 

other  and  passing  through  the  remaining  extremities. 

This  is  easily  seen  by  folding  on  the  diameter  perpen- 

dicular to  the  parallel  chords. 
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207.  The  two  chords  and  the  joins  of  their  extrem- 

ities towards  the  same  parts  form  a  trapezoid  which 

has  an  axis  of  symmetry,  viz.,  the  diameter  perpen- 

dicular to  the  parallel  chords.  The  diagonals  of  the 

trapezoid  intersect  on  the  diameter.  It  is  evident  by 

folding  that  the  angles  between  each  of  the  parallel 

chords  and  each  diagonal  of  the  trapezoid  are  equal. 

Also  the  angles  upon  the  other  equal  arcs  are  equal. 

208.  The  angle  subtended  at  the  center  of  a  circle 

by  any  arc  is  double  the  angle  subtended  by  it  at  the 
circumference. 

Fig.  61. Fig.  62 

An  inscribed  angle  equals  half  the  central  angle 

standing  on  the  same  arc. 

Given 

AVB  an  inscribed  angle,  and  A  OB  the  central  angle 

on  the  same  arc  AB. 

To  prove         that  /  A  VB  =  \  Z  A  OB. 
Proof. 

1.  Suppose    VO  drawn   through   center   O,    and   pro- 
duced to  meet  the  circumference  at  X. 
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Then     Z  XVB  =  /_  VBO. 

2.  And  /  XOB  =  /  XVB  +  /_  VBO, 

=  2 1  XVB. 

3.  .-.  l  XVB  =  ̂  I  XOB. 

4.  Similarly  /_  A  VX=  \/_A  <9X(each=zero  in  Fig.  62), 

and     .-.  /_AVB  =  \/_AOB. 

The  proof  holds  for  all  three  figures,  point  A  hav- 

ing moved  to  X  (Fig.  62),  and  then  through  X  (Fig. 

63).* 

209.  The  angle  at  the  center  being  constant,  the 

angles  subtended  by  an  arc  at  all  points  of  the  cir- 

cumference are  equal. 

210.  The  angle  in  a  semicircle  is  a  right  angle. 

211.  If  AB  be  a  diameter  of  a  circle,  and  DC  a 

chord  at  right  angles  to  it,  then  ACBD  is  a  quadri- 

lateral of  which  AB  is  an  axis  of  symmetry.  The 

angles  BCA  and  ADB  being  each  a  right  angle,  the 

remaining  two  angles  DBC  and  CAD  are  together 

equal  to  a  straight  angle.  If  A'  and  B'  be  any  other 
points  on  the  arcs  DAC  and  CBD  respectively,  the 

Z  CAD  =  l  CA'D  and  lDBC=/_DB'C,  and  /  CA'D 

+  DB'C  =  a  straight  angle.  Therefore,  also,  iB'CA' 

+  /  A'DB'  =  a  straight  angle. 

Conversely,  if  a  quadrilateral  has  two  of  its  oppo- 

site angles  together  equal  to  two  right  angles,  it  is 

inscriptible  in  a  circle. 

*The  above  figures  and  proof  are  from  Beman  and  Smith's  New  Plane 
and  Solid  Geometry,  p.  129. 
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212.  The  angle  between  the  tangent  to  a  circle  and 

a  chord  which  passes  through  the  point  of  contact  is 

equal  to  the  angle  at  the  circumference  standing  upon 

that  chord  and  having  its  vertex  on  the  side  of  it  op- 

posite to  that  on  which  the  first  angle  lies. 

Let  AC  be  a  tangent  to  the  circle  at  A  and  AB  a 

chord.  Take  O  the  center  of  the  circle  and  draw  OA, 

OB.      Draw  OD  perpendicular  to  AB. 

Then  lBAC=  /_AOD  =  \/_BOA. 

.A 

213.  Perpendiculars  to  diameters  at  their  extremi- 

ties touch  the  circle  at  these  extremities.  (See  Fig. 64). 

The  line  joining  the  center  and  the  point  of  intersection 
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of  two  tangents  bisects  the  angles  between  the  two 

tangents  and  between  the  two  radii.  It  also  bisects 

the  join  of  the  points  of  contact.  The  tangents  are 

equal. 

This  is  seen  by  folding  through  the  center  and 

the  point  of  intersection  of  the  tangents. 

Let  AC,  AB  be  two  tangents  and  ADEOF  the 

line  through  the  intersection  of  the  tangents  A  and 

the  center  O,  cutting  the  circle  in  D  and  F  and  BC 

in  E. 

Then  AC  or  AB  is  the  geometric  mean  of  AD  and 

AF;  AE  is  the  harmonic  mean;  and  A O  the  arith- 
metic mean. 

ABi=AD-AF. 

AB*=OA-AE. 

^      AD-AF       2AD-AF .  • .  AE  — 
OA  AD-^AF 

Similarly,  if  any  other  chord  through  A  be  ob- 

tained cutting  the  circle  in  P  and  R  and  BC  in  Q, 

then  AQ  is  the  harmonic  mean  and  AC  ihe  geometric 

mean  between  AP  and  AR. 

214.  Fold  a  right-angled  triangle  OCB  and  CA 

the  perpendicular  on  the  hypotenuse.  Take  D  in  AB 

such  that  0D=  OC  (Fig.  G5). 

Then    OA-OB=OC2=OP>2, 

and      OA  :  OC=OC:  OB, 

OA  :  OD=OD:  OB. 
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A  circle  can  be  described  with  O  as  center  and 

OC  ox  OD  as  radius. 

The  points  A  and  B  are  inverses  of  each  other 

with  reference  to  the  center  of  inversion  0  and  the 

circle  of  inversion  CDE. 

Fig.  65. 

Hence  when  the  center  is  taken  as  the  origin,  the 

foot  of  the  ordinate  of  a  point  on  a  circle  has  for  its 

inverse  the  point  of  intersection  of  the  tangent  and 
the  axis  taken. 

215.  Fold  FBG  perpendicular  to  OB.  Then  the 

line  FBG  is  called  the  polar  of  point  A  with  reference 

to  the  polar  circle  CDE  and  polar  center  0 ;  and  A  is 

called  the  pole  of  FBG.     Conversely  B  is  the  pole  of 
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CA  and  CA   is   the   polar  of  B  with   reference  to  the 

same  circle. 

216.  Produce  OC  to  meet  FBG  in  F,  and  fold  AH 

perpendicular  to  OC. 

Then  ./''and  H  are  inverse  points. 
AH  is  the  polar  of  7%  and  the  perpendicular  at  F 

to  OF  is  the  polar  of  H. 

217.  The  points  A,  B,  F,  H,  are  concyclic. 

That  is,  two  points  and  their  inverses  are  con- 

cyclic  ;  and  conversely. 

Now  take  another  point  G  on  FBG.  Draw  OG, 

and  fold  AK  perpendicular  to  OG.  Then  K  and  G 

are  inverse  points  with  reference  to  the  circle  CDF. 

218.  The  points  F,  B,  G  are  collinear,  while  their 

polars  pass  through  A. 

Hence,  the  polars  of  collinear  points  are  concur- 
rent. 

219.  Points  so  situated  that  each  lies  on  the  polar 

of  the  other  are  called  conjugate  points,  and  lines  so 

related  that  each  passes  through  the  pole  of  the  other 

are  called  conjugate  lines. 

A  and  Fare  conjugate  points,  so  are  A  and  B,  A 
and  G. 

The  point  of  intersection  of  the  polars  of  two 

points  is  the  pole  of  the  join  of  the  points. 

220.  As  A  moves  towards  D,  B  also  moves  up  to  it. 

Finally  A  and  B  coincide  and  FBG  is  the  tangent  at  B. 
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Hence  the  polar  of  any  point  on  the  circle  is  the 

tangent  at  that  point. 

221.  As  A  moves  back  to  O,  B  moves  forward  to 

infinity.  The  polar  of  the  center  of  inversion  or  the 

polar  center  is  the  line  at  infinity. 

222.  The  angle  between  the  polars  of  two  points 

is  equal  to  the  angle  subtended  by  these  points  at  the 

polar  center. 

223.  The  circle  described  with  B  as  a  center  and 

BC  as  a  radius  cuts  the  circle  CDE  orthogonally. 

224.  Bisect  AB  in  L  and  fold  LN  perpendicular 

to  AB.  Then  all  circles  passing  through  A  and  B 

will  have  their  centers  on  this  line.  These  circles  cut 

the  circle  CDE  orthogonally.  The  circles  circum- 

scribing the  quadrilaterals  ABFH  and  ABGK  are 

such  circles.  AF  and  AG  are  diameters  of  the  re- 

spective circles.  Hence  if  two  circles  cut  orthogon- 

ally the  extremities  of  any  diameter  of  either  are  con- 

jugate points  with  respect  to  the  other. 

225.  The  points  O,  A,  Zf  and  K  are  concyclic.  H, 

A,  A' being  inverses  of  points  on  the  line  FBG,  the 
inverse  of  a  line  is  a  circle  through  the  center  of  in- 

version and  the-  pole  of  the  given  line,  these  points 
being  the  extremities  of  a  diameter ;  and  conversely. 

226.  If  DO  produced  cuts  the  circle  CDF  in  D', 

D  and  D'  are  harmonic  conjugates  of  A  and  B.     Sim- 
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ilarly,  if  any  line  through  B  cuts  AC  in  A'  and  the 

circle  CDE  in  d  and  d' ' ,  then  d  and  */'  are  harmonic 

conjugates  of  A'  and  B. 

227.  Fold  any  line  LM=LB  =  LA,  and  ̂ <9'  per- 

pendicular to  LM  meeting  AB  produced  in  0' . 
Then  the  circle  described  with  center  0'  and  ra- 

dius (2'J/cuts  orthogonally  the  circle  described  with 
center  L  and  radius  LM. 

Now  OL2  =  OB2  +  LB2, 

and  OL2=OM2  +  LM2. 

.-.    OL2—0'L2=OE2—0'M2. 

.-.  LN is  the  radical  axis  of  the  circles  0  (OC) 

and  0\0'M). 
By  taking  other  points  in  the  semicircle  AMB  and 

repeating  the  same  construction  as  above,  we  get  two 

infinite  systems  of  circles  co-axial  with  0(0C)  and 

0\0'M),  viz.,  one  system  on  each  side  of  the  radical 
axis,  LN.  The  point  circle  of  each  system  is  a  point, 

A  or  B,  which  may  be  regarded  as  an  infinitely  small 
circle. 

The  two  infinite  systems  of  circles  are  to  be  re- 

garded as  one  co-axial  system,  the  circles  of  which 

range  from  infinitely  large  to  infinitely  small — the 

radical  axis  being  the  infinitely  large  circle,  and  the 

limiting  points  the  infinitely  small.  This  system  of 

co-axial  circles  is  called  the  limiting  point  species. 
If  two  circles  cut  each  other  their  common  chord 

is   their  radical   axis.     Therefore   all   circles   passing 
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through  A   and  B  are   co-axial.      This   system    of   co- 

axial circles  is  called  the  common  point  species. 

228.  Take  two  lines  OAB  and  OPQ.  From  two 

points  A  and  B  in  OAB  draw  AP,  BQ  perpendicular 

to  OPQ.  Then  circles  described  with  A  and  B  as 

centers  and  AP  and  BQ  as  radii  will  touch  the  line 

OPQ  at  P  and  Q. 

Then  OA  :  OB  =  AP  :  BQ. 

This  holds  whether  the  perpendiculars  are  towards 

the  same  or  opposite  parts.  The  tangent  is  in  one 

case  direct,  and  in  the  other  transverse. 

In  the  first  case,  O  is  outside  AB,  and  in  the  sec- 

ond it  is  between  A  and  B.  In  the  former  it  is  called 

the  external  center  of  similitude  and  in  the  latter  the 

internal  centre  of  similitude  of  the  two  circles. 

229.  The  line  joining  the  extremities  of  two  par- 

allel radii  of  the  two  circles  passes  through  their  ex- 

ternal center  of  similitude,  if  the  radii  are  in  the  same 

direction,  and  through  their  internal  center,  if  they 

are  drawn  in  opposite  directions. 

230.  The  two  radii  of  one  circle  drawn  to  its  points 

of  intersection  with  any  line  passing  through  either 

center  of  similitude,  are  respectively  parallel  to  the 

two  radii  of  the  other  circle  drawn  to  its  intersections 

with  the  same  line. 

231.  All  secants  passing  through  a  center  of  simil- 

itude of  two  circles  are  cut  in  the  same  ratio  by  the 

circles. 
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232..  If  B\,  D\,  and  B2,  D<i  be  the  points  of  inter- 

section, B\,  B<i,  and  D\,  D<i  being  corresponding 

points, 

0BX  ■  0D2  =  0DX  ■  OB,.  =  0C<?-  $$. 
A2C2 

Hence  the  inverse  of  a  circle,  not  through  the  cen- 
ter of  inversion  is  a  circle. 

Fig.  66. 

The  center  of  inversion  is  the  center  of  similitude 

of  the  original  circle  and  its  inverse. 

The  original  circle,  its  inverse,  and  the  circle  of 

inversion  are  co-axial. 

233.  The  method  of  inversion  is  one  of  the  most 

important  in  the  range  of  Geometry.  It  was  discov- 

ered jointly  by  Doctors  Stubbs  and  Ingram,  Fellows 

of  Trinity  College,  Dublin,  about  1842.  It  was  em- 

ployed by  Sir  William  Thomson  in  giving  geometric 

proof  of  some  of  the  most  difficult  propositions  in  the 

mathematical  theory  of  electricity. 

SECTION  II.— THE  PARABOLA. 

234.  A  parabola  is  the  curve  traced  by  a  point 

which  moves  in  a  plane  in  such  a  manner  that  its  dis- 
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tance  from  a  given  point  is  always  equal  to  its  dis- 

tance from  a  given  straight  line. 

235.  Fig.  67  shows  how  a  parabola  can  be  marked 

on  paper.  The  edge  of  the  square  MN  is  the  direct- 

rix, O  the  vertex,  and  F  the  focus.  Fold  through  OX 

and  obtain  the  axis.      Divide   the  upper  half  of  the 
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Fig.  67. 

square  into  a  number  of  sections  by  lines  parallel  to 

the  axis.  These  lines  meet  the  directrix  in  a  number 

of  points.  Fold  by  laying  each  of  these  points  on  the 

focus  and  mark  the  point  where  the  corresponding 

horizontal  line  is  cut.  The  points  thus  obtained  lie 

on  a  parabola.  The  folding  gives  also  the  tangent  to 

the  curve  at  the  point. 
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236.  FL  which  is  at  right  angles  to  OX  is  called 

the  semi-latus  rectum. 

237.  When  points  on  the  upper  half  of  the  curve 

have  been  obtained,  corresponding  points  on  the  lower 

half  are  obtained  by  doubling  the  paper  on  the  axis 

and  pricking  through  them. 

238.  When  the  axis  and  the  tangent  at  the  vertex 

are  taken  as  the  axes  of  co-ordinates,  and  the  vertex 

as  origin,  the  equation  of  the  parabola  becomes 

f  =  lax  or  FJV2  =  4  •  OF-  ON. 
Y 

Fig.  68. 

The  parabola  may  be  denned  as  the  curve  traced 

by  a  point  which  moves  in  one  plane  in  such  a  manner 

that  the  square  of  its  distance  from  a  given  straight 

line  varies  as  its  distance  from  another  straight  line; 

or  the  ordinate  is  the  mean  proportional  between  the 
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abscissa,  and  the  latus  rectum  which  is  equal  to  4-  OF. 
Hence  the  following  construction. 

Take  OT  in  FO  produced  =  4-  OF. 
Bisect  TN  in  M. 

Take  Q  in  OF  such  that  MQ  =  MN=MT. 

Fold  through  Q  so  that  QF  may  be  at  right  angles 
to  OY. 

Let  F  be  the  point  where  QF  meets  the  ordinate 
of  N. 

Then  F  is  a  point  on  the  curve. 

239.  The  subnormals  2  OF  and  FF=FG  =  FT'. 

These  properties  suggest  the  following  construc- 
tion. 

Take  iVany  point  on  the  axis. 

On  the  side  of  N  remote  from  the  vertex  take 

JVG  =  20F. 

Fold  NP  perpendicular  to  OG  and  find  P  in  NP 
such  that  FP  =  FG. 

Then  F  is  a  point  on  the  curve. 

A  circle  can  be  described  with  F  as  center  and  FG, 

FP  and  FT'  as  radii. 
The  double  ordinate  of  the  circle  is  also  the  double 

ordinate  of  the  parabola,  i.  e.,  F  describes  a  parabola 

as  N  moves  along  the  axis. 

240.  Take  any  point  N'  between  O  and  F (Fig.  69). 

Fold  RN'P  at  right  angles  to  OF. 
Take  R  so  that  OR  =  OF. 

Fold  .ffiVperpendicular  to  OR,  IV  being  on  the  axis. 
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Fold  NP  perpendicular  to  the  axis. 

Now,  in  <9 A' take  OT=ON'. 

Take  P  in  RN'  so  that  FP  =  FT. 

Fold  through  P'F  cutting  NP  in  jP. 

Then  P  and  /"  are  points  on  the  curve. 

119 

Fig.  69. 

241.  A7"  and  N'  coincide  when  PFP  is  the  latus 
rectum. 

As  N'  recedes  from  F  to  0,  N  moves  forward  from 
F  to  infinity. 

At  the  same  time,  Amoves  toward  O,  and  T'(OT'= 
ON)  moves  in  the  opposite  direction  toward  infinity. 

242.  To  find  the  area  of  a  parabola  bounded  by 

the  axis  and  an  ordinate. 

Complete  the  rectangle  ONPK.      Let  OK  be  di- 
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vided  into  n  equal  portions  of  which  suppose  Oni  to 

contain  r  and  mn  to  be  the  (r-f-  \)tk.  Draw  nip,  nq  at 

right  angles  to  OK  meeting  the  curve  in  p,  q,  and  pn' 
at  right  angles  to  nq.  The  curvilinear  area  OPK  is 

the  limit  of  the  sum  of  the  series  of  rectangles  con- 

structed as  mn'  on  the  portions  corresponding  to  mn. 
But  \Z3pn  :  □  NK=pm  ■  mn  :  PK-  OK, 

and,  by  the  properties  of  the  parabola, 

pm  :  PK  =  Om2  :  OK2 
__;2  .   n1 

and  mn  :  0K=  1  :  n. 

.  • .  pm-mn:PK-  0K=  ; 2  :  n3. 

r2 

• "  •  HUpn  =-,XD  NK. 

n6 

Hence  the  sum  of  the  series  of  rectangles 

_  F  +  22  +  32....  +  0  —  l)2 

ns 

(n  —  l)n(2n—\) 
1-2-3-*3 

2n3  —  3«2  -(-  « 
l-2-3-«3 

xa^vx 

XCZDi^A' 

l-^  +  ̂jx^^ 
=  i  of  izn  A^  in  the  limit,  i.  e. ,  when  n  is  00. 

.-.  The  curvilinear  area  OPK=\  of  1 — \NK,  and  the 
parabolic  area  OPN=  f  of  nnNK. 

243.  The  same  line  of  proof  applies  when  any 
diameter  and  an  ordinate  are  taken  as  the  boundaries 

of  the  parabolic  area. 
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SECTION  III.— THE  ELLIPSE. 

244.  An  ellipse  is  the  curve  traced  by  a  point  which 

moves  in  a  plane  in  such  a  manner  that  its  distance 

from  a  given  point  is  in  a  constant  ratio  of  less  in- 
equality to  its  distance  from  a  given  straight  line. 

Let  Fbe  the  focus,  OY the  directrix,  and  XX'  the 
perpendicular  to  OY  through  F.     Let  FA  :AObe  the 
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Fig.  70. 

constant  ratio,  FA  being  less  than  AO.     A  is  a  point 

on  the  curve  called  the  vertex. 

As  in  §  116,  find  A'  in  XX'  such  that 

FA':A'0  =  FA  :  AO. 

Then  A'  is  another  point  on  the  curve,  being  a 
second  vertex. 

Double  the  line  A  A'  on  itself  and  obtain  its  middle 

point  C,  called  the  center,  and  mark  F'  and  O'  corre- 

sponding to  i^and  O.      Fold  through  O'  so  that  O  Y' 
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may  be  at  right  angles  to  XX'.     Then  F'  is  the  sec- 
ond focus  and  O'Y'  the  second  directrix. 

By  folding  A  A',  obtain  the  perpendicular  through  C. 

FA  :AO  =  FA':A'0 

=  FA-\-FA':AO  +  A'0 

=  AA':  00' =  CA  :  CO. 

Take  points  B  and  B'  in  the  perpendicular  through 

C  and  on  opposite  sides  of  it,  such  that  FB  and  FB' 

are  each  equal  to  CA.  Then  B  and  B'  are  points  on 
the  curve. 

AA'  is  called  the  major  axis,  and  BB'  the  minor 
axis. 

245.  To  find  other  points  on  the  curve,  take  any 

point  E  in  the  directrix,  and  fold  through  E  and  A, 

and  through  E  and  A'.  Fold  again  through  E  and  F 

and  mark  the  point  P  where  FA'  cuts  EA  produced. 

Fold  through  PF  and  P  on  EA' .  Then  P  and  P  are 
points  on  the  curve. 

Fold  through  P  and  P  so  that  KPL  and  K'L'P' 

are  perpendicular  to  the  directrix,  K  and  K'  being  on 
the  directrix  and  L  and  L'  on  EL. 

FL  bisects  the  angle  A'FP, 

.'•.   /  LFP=  /  PLF  and  FP  =  PL. 
FP:PK=PL  :  PK 

=  FA  :  AO. 

And 

FP.PK'=P'L'\  PK' 
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=  FA':A'0 
=  FA  :A0. 

If  FO  =  FO,  FP  is  at  right  angles  to  FO,  and 

FP  =  FP'.     PP'  is  the  latus  rectum. 

246.  When  a  number  of  points  on  the  left  half  of 

the  curve  are  found,  corresponding  points  on  the  other 

half  can  be  marked  by  doubling  the  paper  on  the 

minor  axis  and  pricking  through  them. 

247.  An  ellipse  may  also  be  defined  as  follows  : 

If  a  point  P  move  in  such  a  manner  that  PJV2 

:  AN-NA'  is  a  constant  ratio,  PN  being  the  distance 

of  P  from  the  line  joining  two  fixed  points  A,  A',  and 

N  being  between  A  and  A',  the  locus  of  P  is  an  ellipse 

of  which  AA'  is  an  axis. 

248.  In  the  circle,  PN2  =  AN-NA'. 

In  the  ellipse  PN2  :  AN-NA'  is  a  constant  ratio. 
This  ratio  may  be  less  or  greater  than  unity.  In 

the  former  case  /_APA'  is  obtuse,  and  the  curve  lies 

within  the  auxiliary  circle  described  on  AA'  as  diam- 

eter. In  the  latter  case,  /  APA'  is  acute  and  the  curve 

is  outside  the  circle.  In  the  first  case  AA'  is  the 

major,  and  in  the  second  it  is  the  minor  axis. 

249.  The  above  definition  corresponds  to  the  equa- 
tion 

b2 

y2 
 
= 
 
-i, 

 
( 2a x  —  x2)

 

a1  J 

when  the  vertex  is  the  origin. 
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250.  AN'NA'  is  equal  to  the  square  on  the  ordi- 

nate QN  of  the  auxiliary  circle,  and  PN ':  QN  = 
BC.AC. 

251.  Fig.  71  shows  how  the  points  can  be  deter- 

mined when  the  constant  ratio  is  less  than  unity. 

Thus,  layoff  CD  =  AC,  the  semi-major  axis.  Through 

E  any  point  of  ̂ Cdraw  DE  and  produce  it  to  meet 

1Q 

A' 
the  auxiliary  circle  in  Q.  Draw  B'E  and  produce  it 
to  meet  the  ordinate  QN  in  P.  Then  is  PN:  QN 

=  B' C ':  DC=BC :  AC.  The  same  process  is  appli- 
cable when  the  ratio  is  greater  than  unity.  When 

points  in  one  quadrant  are  found,  corresponding  points 

in  other  quadrants  can  be  easily  marked. 

252.  If  P  and  P'  are  the  extremities  of  two  conju- 
gate diameters  of  an  ellipse  and  the  ordinates  MP 
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and  M'P  meet  the  auxiliary  circle  in  Q  and  Q',  the 

angle  QCQ'  is  a  right  angle. 
Now  take  a  rectangular  piece  of  card  or  paper  and 

mark  on  two  adjacent  edges  beginning  with  the  com- 
mon corner  lengths  equal  to  the  minor  and  major 

axes.  By  turning  the  card  round  C  mark  correspond- 

ing points  on  the  outer  and  inner  auxiliary  circles. 

Let  Q,  R  and  Q,  R'  be  the  points  in  one  position. 

Fold  the  ordinates  QM  and  QM\  and  RP  and  R'P', 
perpendiculars  to  the  ordinates.  Then  P  and  P  are 

points  on  the  curve. 

Fig.  72. 

253«  Points  on  the  curve  may  also  be  easily  deter- 

mined by  the  application  of  the  following  property  of 
the  conic  sections. 

The  focal  distance  of  a  point  on  a  conic  is  equal 
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to  the  length  of  the  ordinate  produced   to  meet  the 

tangent  at  the  end  of  the  latus  rectum. 

254.  Let  A  and  A'  be  any  two  points.  Draw  AA' 
and  produce  the  line  both  ways.  From  any  point  D 

in  A' A  produced  draw  DR  perpendicular  to  AD.  Take 

any  point  R  in  DR  and  draw  RA  and  RA'.  Fold  AP 

perpendicular  to  AR,  meeting  RA'  in  P.  For  different 
positions  of  R  in  DR,  the  locus  of  P  is  an  ellipse,  of 

which  AA'  is  the  major  axis. 

Fold  PN  perpendicular  to  A  A'. 
Now,  because  PN  is  parallel  to  RD, 

PN:A'N=RD:A'D. 

Again,  from  the  triangles,  APJV  and  DAR, 

PN:AN=AD:  RD. 

.-.   PN2  :  AN -A'N=AD:  A'D,  a  constant  ratio, 

less  than  unity,  and  it  is   evident  from  the  construc- 

tion that  jVmust  lie  between  A  and  A'. 

SECTION  IV.— THE  HYPERBOLA. 

255.  An  hyperbola  is  the  curve  traced  by  a  point 

which  moves  in  a  plane  in  such  a  manner  that  its 
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distance  from  a  given  point  is  in  a  constant  ratio  of 

greater  inequality  to  its  distance  from  a  given  straight 
line. 

256.  The  construction  is  the  same  as  for  the  el- 

lipse, but  the  position  of  the  parts  is  different.  As 

explained  in  §  119,  X,  A'  lies  on  the  left  side  of  the 

directrix.  Each  directrix  lies  between  A  and  A',  and 

the  foci  lie  without  these  points.  The  curve  con- 

sists of  two  branches  which  are  open  on  one  side. 

The  branches  lie  entirely  within  two  vertical  angles 

formed  by  two  straight  lines  passing  through  the  cen- 

ter which  are  called  the  asymptotes.  These  are  tan- 

gents to  the  curve  at  infinity. 

257.  The  hyperbola  can  be  denned  thus  :  If  a  point 

P  move  in  such  a  manner  that  PN2  :  AN  •  NA'  is  a 

constant  ratio,  PN  being  the  distance  of  P  from  the 

line  joining  two  fixed  points  A  and  A',  and  JV  not 

being  between  A  and  A',  the  locus  of  P  is  an  hyper- 

bola, of  which  AA'  is  the  transverse  axis. 
This  corresponds  to  the  equation 

•  =£(&«  +  *"), 

where  the  origin  is  at  the  right-hand  vertex  of  the 

hyperbola. 

Fig.  74  shows  how  points  on  the  curve  may  be 

found  by  the  application  of  this  formula. 

Let  C  be  the  center  and  A  the  vertex  of  the  curve. 
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CB'=CB  =  b\ 

CA'  =  CA  =  CA'  =  a. 

Fold  CD  any  line  through  C  and  make  CD  =  CA. 

Fold  DN  perpendicular  to  CD.  Fold  NQ  perpen- 

dicular to  CA  and  make  NQ  =  DN.  Fold  (^/"cut- 

ting CA  in  S.      Fold  B'S  cutting  QN  in  P. 

Fig.  74- 

Then  P  is  a  point  on  the  curve. 

For,    since  DN  is    tangent   to  the   circle   on   the 

diameter  A' A 

DN'1  =  AN-  (2 CA  +  AN), 
or  since  QN=DN, 

QN*  =  x{2a  +  x). 
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If  QN=b  then  N  is  the  focus  and  CD  is  one  of 

the  asymptotes.  If  we  complete  the  rectangle  on 

AC  and  BC  the  asymptote  is  a  diagonal  of  the  rect- 

angle. 

258.  The  hyperbola  can  also  be  described  by  the 

property  referred  to  in  §  253. 

259.  An  hyperbola  is  said  to  be  equilateral  when 

the  transverse  and  conjugate  axes  are  equal.  Here 

a  —  b,  and  the  equation  becomes 

y2  =  (2a  -|-  x)x. 

In  this  case  the  construction  is  simpler  as  the  ordi- 

nate of  the  hyperbola  is  itself  the  geometric  mean  be- 

tween AN  and  A'N,  and  is  therefore  equal  to  the  tan- 

gent from  iVto  the  circle  described  on  A  A'  as  diameter. 

260.  The  polar  equation  to  the  rectangular  hyper- 

bola, when  the  center  is  the  origin  and  one  of  the  axes 

the  initial  line,  is 

r2  cos  26  =  a2 
a 

DS~20 

or  r2  =  -      7r-fi'  a. 

Let  OX,  OYbe  the  axes;  divide  the  right   angle 

K6>Xinto  a  number  of  equal  parts.      Let  XOA,  A  OB 
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be  two  of  the  equal  angles.  Fold  XB  at  right  angles 

to  OX.  Produce  BO  and  take  0F=  OX.  Fold  OG 

perpendicular  to  BF  and  find  G  in  OG  such  that  FGB 

is  a  right  angle.  Take  OA  =  OG.  Then  A  is  a  point 

on  the  curve. 

Y 

Fig.  75- 

Now,  the  angles  XOA  and  A  OB  being  each  6, 

OB.         a 
cos  26 

And  OA2=OG2=OB  •  CV= 
a 

a. 

cos  2^ 

.-.   ;-2cos2#  =  a2. 

261.  The  points  of  trisection  of  a  series  of  conter- 

minous circular  arcs  lie  on  branches  of  two  hyperbolas 

of  which  the  eccentricity  is  2.  This  theorem  affords 

a  means  of  trisecting  an  angle.* 

*  See  Taylor's  Ancient  and  Modern  Geometry  of  Conies,  examples  308,  390 
with  tootnote. 



XIV.   MISCELLANEOUS  CURVES. 

262.  I  propose  in  this,  the  last  chapter,  to  give 

hints  for  tracing  certain  well-known  curves. 

THE  CISSOID.* 

263.  This  word  means  ivy-shaped  curve.  It  is  de- 

fined as  follows  :  Let  OQA  (Fig.  76)  be  a  semicircle 

on  the  fixed  diameter  OA,  and  let  QM,  RN  be  two 

ordinates  of  the  semicircle  equidistant  from  the  cen- 

ter. Draw  OR  cutting  QM  in  P.  Then  the  locus 

of  P  is  the  cissoid. 

If  OA  =2a,  the  equation  to  the  curve  is 

y2  (2a — x)  =x3. 

Now,  let  PR  cut  the  perpendicular  from  C  in  D 

and  draw  AP  cutting  CD  in  E. 

RN:CD  =  ON:  OC=AM:AC=PM:EC, 

.-.   RN:PM=CD:CE. 

But  RN:  PM=ON:  OM=ON:  AN=ON2 :  NR2 

=  OC2:CP>2, 

.-.    CP>:CE  =  OC2:CB2. 

If  CF  be  the  geometric  mean  between  CD  and  CE, 

*  See  Beman  and  Smith's  translation  of  Klein's  Famous  Problems  of  Ele- 
mentary Geometry,  p.  44. 
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CD:CF=OC:  CD 

.-.    OC:CD  =  CD:CF=CF:CE 

.  • .    CD  and  CF  are  the  two  geometric  means  be- 
tween OC  and  CE. 

/ 

P' 

Q R 

D 

p~~~-~~^^ 

E 

i                       ̂ ""^1 O  M  C  N  F  A 

Fig.  76. 

264.  The  cissoid  was  invented  by  Diodes  (second 

century  B.  C.)  to  find  two  geometric  means  between 
two  lines  in  the  manner  described  above.  OC  and 

CE  being  given,  the  point  P  was  determined  by  the 

aid  of  the  curve,  and  hence  the  point  D. 

265.  If  PD  and  DR  are  each  equal  to  OQ,  then 

the  angle  AOQ  is  trisected  by  OP. 
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Draw  QR.      Then  QR  is  parallel  to  OA,  and 

DQ  =  DP  =  DR  =  OQ 

...   iROQ  =  lQDO  =  2/_QRO  =  2/_AOR. 

THE  CONCHOID  OR  MUSSEL-SHAPED  CURVE.* 

266.  This  curve  was  invented  by  Nicomedes  (c 

150  B.  C.)-  Let  O  be  a 

fixed  point,  a  its  dis- 
tance from  a  fixed  line, 

DM,  and  let  a  pencil  of 

rays  through  O  cut  DM. 

On  each  of  these  rays 

lay  off,  each  way  from  its 

intersection  with  DM,  a. 

segment  b.  The  locus 

of  the  points  thus  deter- 
mined is  the  conchoid. 

According  as  b  >,  =, 

or  <tf,  the  origin  is  a 

node,  a  cusp,  or  a  con- 

jugate point.  The  fig- 

uref  represents  the  case 

when  b^>  a. 

267.  This  curve  also 

was  employed  for  finding 

two  geometric  means,  and  for  the  trisection  of  an  angle. 

*See  Beman  and  Smith's  translation  of  Klein's  Famous  Problems  of  Ele- 
mentary Geometry,  p.  40. 

tFrom  Beman  and  Smith's  translation  of  Klein's  Famous  Problems  of 
Elementary  Geometry,  p.  46. 

Fig.  77- 
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Let  OA  be  the  longer  of  the  two  lines  of  which 

two  geometric  means  are  required. 

Bisect  OA  in  B ;  with  O  as  a.  center  and  OB  as  a 

radius  describe  a  circle.  Place  a  chord  BC  in  the 

circle  equal  to  the  shorter  of  the  given  lines.  Draw 

AC  and  produce  AC  and  BC  to  D  and  E,  two  points 

collinear  with  O  and  such  that  DE  =  OB,  or  BA. 

Fig.  78. 

Then  i?/?  and  CE  are  the  two  mean  proportionals 

required. 
Let  OE  cut  the  circles  in  E  and  G. 

By  Menelaus's  Theorem,* 

BCED    OA=CE-OD-BA 

.-.  BC-OA=CE-OD 

BC        OD °rCE  =  OA 

BE        OB-\-OA       GE 

" " "  C£~  '     OA     ~  ~~  ~0A' 
*See  Beman  and  Smith's  New  Plane  and  Solid  Geometry,  p.  240. 
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But  GEEF=BEEC. 

.-.    GE-OD  =  BEEC. 

.-.    OA  ■OD  =  EC2. 

.-.    OA:CE  =  CE:OD  =  OD:BC. 

The  position  of  E  is  found  by  the  aid  of  the  con- 
choid of  which  AD  is  the  asymptote,  0  the  focus,  and 

DE  the  constant  intercept. 

268.  The  trisection  of  the  angle  is  thus  effected. 

In  Fig.  77,  let  <f>  =  /_MOY,  the  angle  to  be  trisected. 

On  OM  lay  off  OM=t>,  any  arbitrary  length.  With 
M  as  a  center  and  a  radius  b  describe  a  circle,  and 

through  M  perpendicular  to  the  axis  of  X  with  origin 

0  draw  a  vertical  line  representing  the  asymptote  of 

the  conchoid  to  be  constructed.  Construct  the  con- 

choid. Connect  0  with  A,  the  intersection  of  the  circle 

and  the  conchoid.      Then  is  /_  A OY one  third  of  cp* 

THE  WITCH. 

269.  If  OQA  (Fig.  79)  be  a  semicircle  and  NQ  an 

ordinate  of  it,  and  NP  be  taken  a  fourth  proportional 

to  ON,  OA  and  QN,  then  the  locus  of  P  is  the  witch. 

Fold  AM  at  right  angles  to  OA. 

Fold  through  O,  Q,  and  M. 

Complete  the  rectangle  NAMP. 

PN:  QN=OM:OQ 
=  0A  :  ON. 

*Beman  and  Smith's  translation  of  Klein's  Famous  Problems  of  Elemen- 
tary Geometry,  p.  46. 
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Therefore  P  is  a  point  on  the  curve. 

Its  equation  is, 

xy1  =  a2  {a  —  x). 

Fig.  79. 

This  curve  was  proposed  by  a  lady,  Maria  Gaetana 

Agnesi,  Professor  of  Mathematics  at  Bologna. 

THE  CUBICAL  PARABOLA. 

270.   The  equation  to  this  curve  is  a2j  =  x3. 

Let  OX  and  O  Y be  the  rectangular  axes,  OA=a, 
and  OX=x. 

In  the  axis  <?Ftake  OB  =  x. 

Draw  BA  and  draw  AC  at  right  angles  to  AB  cut- 

ting the  axis  OY in  C. 
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Draw  CX,  and  draw  XFat  right  angles  to  CX. 

Complete  the  rectangle  XOY. 

P  is  a  point  on  the  curve. 

y oc 

a2y  =  x3. 

x° 

a' 

THE  HARMONIC  CURVE  OR  CURVE  OF  SINES. 

271.  This  is  the  curve  in  which  a  musical  string 

vibrates  when  sounded.  The  ordinates  are  propor- 

tional to  the  sines  of  angles  which  are  the  same  frac- 

tions of  four  right  angles  that  the  corresponding  ab- 
scissas are  of  some  given  length. 

Let  AB  (Fig.  81)  be  the  given  length.   Produce  BA 
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to  C  and  fold  AD  perpendicular  to  AB.  Divide  the 

right  angle  DAC  into  a  number  of  equal  parts,  say, 

four.  Mark  on  each  radius  a  length  equal  to  the  am- 

plitude of  the  vibration,  AC=AP  =  AQ  =  AR  =  AD. 

From  points/',  Q,  R  fold  perpendiculars  to  A C; 

then  PP',  QQ',  PR',  and  DA  are  proportional  to  the 
sines  of  the  angles  PAC,  QAC,  RAC,  DAC. 

Now,  bisect  AB  in  E  and  divide  AE  and  EB  into 

twice  the  number  of   equal  parts  chosen  for  the  right 

C  P'   Q'        R'        A      S'  T'  U'  V 
-i   i   i   i_ 

Fi*.  81. 

angle.  Draw  the  successive  ordinates  SS',  TT',  UU ', 

VV,  etc.,  equal  to  PP' ,  QQ',  RR',  DA,  etc.  Then 
S,  T,  U,  V  are  points  on  the  curve,  and  V  is  the 

highest  point  on  it.  By  folding  on  VV  and  pricking 

through  S,  T,  U,  V,  we  get  corresponding  points  on 

the  portion  of  the  curve  VE.  The  portion  of  the 

curve  corresponding  to  EB  is  equal  to  A  VE  but  lies 

on  the  opposite  side  of  AB.  The  length  from  A  to  E 

is  half  a  wave  length,  which  will  be  repeated  from  E 
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to  B  on  the  other  side  of  AB.     E  is  a  point  of  inflec- 

tion on  the  curve,  the  radius  of  curvature  there  be- 

coming infinite. 

THE  OVALS  OF  CASSINI. 

272.  When  a  point  moves  in  a  plane  so  that  the 

product  of  its  distances  from  two  fixed  points  in  the 

plane  is  constant,  it  traces  out  one  of  Cassini's  ovals. 
The  fixed  points  are  called  the  foci.      The  equation  of 

Fig.  82. 

the  curve  is  rr'  =  >£2,  where  r  and  r'  are  the  distances 

of  any  point  on  the  curve  from  the  foci  and  k  is  a  con- 
stant. 

Let  F  and  F'  be  the  foci.  Fold  through  F  and 

F'.  Bisect  FF'  in  C,  and  fold  BCB'  perpendicular  to 

FF'.  Find  points  B  and  B'  such  that  FB  and  FB' 

are  each  =k.  Then  B  and  B'  are  evidently  points  on 
the  curve. 
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Fold  FK  perpendicular  to  FF'  and  make  FK=k, 

and  on  FF'  take  CA  and  CA'  each  equal  to  CK.  Then 

A  and  A'  are  points  on  the  curve. 

For  CA2=CF2=CF2  +  FFK 

-.  CA'i—CF*=k2  =  (CA+CF)(CA—CF) 
=  F'A-FA. 

Produce  FA  and  take  AT=FK.  In  A T  take  a 

point  J/  and  draw  J/A".  Fold  Alf'  perpendicular  to 

MK  meeting  FA'  in  J/'. 

Then  FM-FM'=P. 

With  the  center  F  and  radius  FM,  and  with  the 

center  F'  and  radius  FM' ,  describe  two  arcs  cutting 
each  other  in  P.     Then  P  is  a  point  on  the  curve. 

When  a  number  of  points  between  A  and  B  are 

found,  corresponding  points  in  the  other  quadrants 

can  be  marked  by  paper  folding. 

When  FF'=V2k  and  rr,  =  \k*  the  curve  as- 
sumes the  form  of  a  lemniscate.      (§  279.) 

When  FF'  is  greater  than  V'lk,  the  curve  consists 
of  two  distinct  ovals,  one  about  each  focus. 

THE  LOGARITHMIC  CURVE. 

273.  The  equation  to  this  curve  \sy=ax. 
The  ordinate  at  the  origin  is  unity. 

If  the  abscissa  increases  arithmetically,  the  ordi- 

nate increases  geometrically. 

The  values  of  y  for  integral  values  of  x  can  be  ob- 

tained by  the  process  given  in  §  108. 
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The  curve  extends  to  infinity  in  the  angular  space 

XOY. 

If  x  be  negative  y=  —  and  approaches  zero  as  x 

increases  numerically.  The  negative  side  of  the  axis 

OX'\s  therefore  an  asymptote  to  the  curve. 

THE  COMMON  CATENARY. 

274.  The  catenary  is  the  form  assumed  by  a  heavy 

inextensible  string  freely  suspended  from  two  points 

and  hanging  under  the  action  of  gravity. 

The  equation  of  the  curve  is 

the  axis  of  y  being  a  vertical  line  through  the  lowest 

point  of  the  curve,  and  the  axis  of  x  a  horizontal  line 

in  the  plane  of  the  string  at  a  distance  c  below  the 

lowest  point ;  c  is  the  parameter  of  the  curve,  and  e 

the  base  of  the  natural  system  of  logarithms. 

When  x  =  c,  y  =  —  (e1  -\-  e~l) 

when  x  =  2c,  y  =  —  (/2  -\-  e~2)  and  so  on. 

275.  From  the  equation 

e  can  be  determined  graphically. 

ce — 2yV~e-\-  c  =  0 

l/7=  -(j+Vy  2—<?) 
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\/e=y  +  V f 

Vy2  —  c2  is  found  by  taking  the  geometric  mean  be- 

tween y  -f-  c  and  y —  c. 

THE  CARDIOID  OR  HEART-SHAPED  CURVE. 

276.  From  a  fixed  point  O  on  a  circle  of  radius  a 

draw  a  pencil  of  lines  and  take  off  on  each  ray,  meas- 

ured both  ways  from  the  circumference,  a  segment 

equal  to  2a.    The  ends  of  these  lines  lie  on  a  cardioid. 

Fig.  83. 

The  equation  to  the  curve  is  r  =  #(1  -f-  cos  #). 

The  origin  is  a  cusp  on  the  curve.  The  cardioid 

is  the  inverse  of  the  parabola  with  reference  to  its 

focus  as  center  of  inversion. 

THE  LIMACON. 

277.  From  a  fixed  point  on  a  circle,  draw  a  num- 

ber of  chords,  and  take  off  a  constant  length  on  each 

of  these  lines  measured  both  ways  from  the  circum- 
ference of  the  circle. 
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If  the  constant  length  is  equal  to  the  diameter  of 

the  circle,  the  curve  is  a  cardioid. 

If  it  be  greater  than  the  diameter,  the  curve  is 

altogether  outside  the  circle. 

If  it  be  less  than  the  diameter,  a  portion  of  the 

curve  lies  inside  the  circle  in  the  form  of  a  loop. 

If  the  constant  length  is  exactly  half  the  diameter, 

the  curve  is  called  the  trisectrix,  since  by  its  aid  any 

angle  can  be  trisected. 

The  equation  is  r  =  acos6-\-  ?>. 

The  first  sort  of  limacon  is  the  inverse  of  an  ellipse; 

and  the  second  sort  is  the  inverse  of  an  hyperbola, 

with  reference  to  a  focus  as  a  center.  The  loop  is  the 

inverse  of  the  branch  about  the  other  focus. 

278.  The  trisectrix  is  applied  as  follows : 

Let  A  OB  be  the  given  angle.   Take  OA,  OB  equal 

to  the  radius  of  the  circle.     Describe  a  circle  with  the 

center   0  and  radius   OA  or   OB.      Produce  AO  in- 
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definitely  beyond  the  circle.  Apply  the  trisectrix  so 

that  O  may  correspond  to  the  center  of  the  circle  and 

OB  the  axis  of  the  loop.  Let  the  outer  curve  cut  AO 

produced  in  C.  Draw  BC  cutting  the  circle  in  D, 
Draw  OD. 

Fig.  85. 

Then  /_ACB  is  \  of  /_AOB. 
For  CD  =  DO  =  OB. 

.-.    IA0B  =  IACB+  /_CBO 

=  £ACB+  /  ODB 

=  LACB-\-2/_ACB 
=  3lACB. 

THE  LEMNISCATE  OF  BERNOULLI. 

279.  The  polar  equation  to  the  curve  is 
r2  =  a?cos2d. 

Let  O  be  the  origin,  and  OA=a. 

Produce  AO,  and  draw  OD  at  right  angles  to  OA 

Take  the  angle  A  OP  =6  and  A  OB  =  26. 

Draw  AB  perpendicular  to  OB. 

In  AO  produced  take  OC=OB. 
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Find  D  in  OD  such  that  CDA  is  a  right  angle. 

Take  OP  =  OD. 

P  is  a  point  on  the  curve. 

—  OBOA 

=  acos28-a 
=  a2cos2V. 

As  stated  above,  this  curve  is  a  particular  case  of 

the  ovals  of  Cassini. 

Fig.  86. 

It  is  the  inverse  of  the  rectangular  hyperbola,  with 

reference  to  its  center  as  center  of  inversion,  and  also 

its  pedal  with  respect  to  the  center. 

The  area  of  the  curve  is  a2. 

THE  CYCLOID. 

280.  The  cycloid  is  the  path  described  by  a  point 

on  the  circumference  of  a  circle  which  is  supposed  to 

roll  upon  a  fixed  straight  line. 

Let  A  and  A'  be  the  positions  of  the  generating 
point  when  in  contact  with  the  fixed  line  after  one 
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complete  revolution  of  the  circle.  Then  AA'  is  equal 
to  the  circumference  of  the  circle. 

The  circumference  of  a  circle  may  be  obtained  in 

length  in  this  way.  Wrap  a  strip  of  paper  round  a 

circular  object,  e.  g.,  the  cylinder  in  Kindergarten 

gift  No.  II.,  and  mark  off  two  coincident  points.  Un- 

fold the  paper  and  fold  through  the  points.  Then  the 

straight  line  between  the  two  points  is  equal  to  the 

circumference  corresponding  to  the  diameter  of  the 

cylinder. 

By  proportion,  the  circumference  corresponding 

to  any  diameter  can  be  found  and  vice  versa. 

Bisect  AA'  in  D  and  draw  DB  at  right  angles  to 

AA' ,  and  equal  to  the  diameter  of  the  generating 
circle. 

Then  A,  A'  and  B  are  points  on  the  curve. 
Find  O  the  middle  point  of  BD. 

Fold  a  number  of  radii  of  the  generating  circle 

through  O  dividing  the  semi-circumference  to  the 

right  into  equal  arcs,  say,  four. 

Divide  AD  into  the  same  number  of  equal  parts. 
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Through  the  ends  of  the  diameters  fold  lines  at 

right  angles  to  BD. 

Let  EFP  be  one  of  these  lines,  F  being  the  end  of 

a  radius,  and  let  G  be  the  corresponding  point  of  sec- 

tion of  AD,  commencing  from  D.  Mark  off  FP  equal 

to  GA  or  to  the  length  of  arc  BF. 

Then  P  is  a  point  on  the  curve. 

Other  points  corresponding  to  other  points  of  sec- 

tion of  AD  may  be  marked  in  the  same  way. 

The  curve  is  symmetric  to  the  axis  BD  and  corre- 

sponding points  on  the  other  half  of  the  curve  can  be 

marked  by  folding  on  BD. 

The  length  of  the  curve  is  4  times  BD  and  its  area 

3  times  the  area  of  the  generating  circle. 

THE  TROCHOID. 

281.  If  as  in  the  cycloid,  a  circle  rolls  along  a 

straight  line,  any  point  in  the  plane  of  the  circle  but 

not  on  its  circumference  traces  out  the  curve  called  a 

trochoid. 

THE  EPICYCLOID. 

282.  An  epicycloid  is  the  path  described  by  a  point 

on  the  circumference  of  a  circle  which  rolls  on  the 

circumference  of  another  fixed  circle  touching  it  on 

the  outside. 

THE  HYPOCYCLOID. 

283.  If  the  rolling  circle  touches  the  inside  of  the 

fixed  circle,  the  curve  traced  by  a  point  on  the  cir- 

cumference of  the  former  is  a  hypocycloid. 
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When  the  radius  of  the  rolling  circle  is  a  sub- 

multiple  of  the  fixed  circle,  the  circumference  of  the 

latter  has  to  be  divided  in  the  same  ratio. 

These  sections  being  divided  into  a  number  of 

equal  parts,  the  position  of  the  center  of  the  rolling 

circle  and  of  the  generating  point  corresponding  to 

each  point  of  section  of  the  fixed  circle  can  be  found 

by  dividing  the  circumference  of  the  rolling  circle  into 

the  same  number  of  equal  parts. 

THE  QUADRATRIX.* 

284.  Let  OACB  be  a  square.  If  the  radius  OA  of 

a  circle  rotate  uniformly  round  the  center  O  from  the 

position  OA  through  a  right  angle  to  OB  and  if  in  the 

same  time  a  straight  line  drawn  perpendicular  to  OB 

move  uniformly  parallel  to  itself  from  the  position 

OA  to  BC ;  the  locus  of  their  intersection  will  be  the 

quadratrix. 

This  curve  was  invented  by  Hippias  of  Elis  (420 

B.  C.)  for  the  multisection  of  an  angle. 

If  P  and  P'  are  points  on  the  curve,  the  angles 

A  OP  and  A  OP'  are  to  one  another  as  the  ordinates 

of  the  respective  points. 

THE  SPIRAL  OF  ARCHIMEDES. 

285.  If  the  line  OA  revolve  uniformly  round  O  as 

center,  while  point  P  moves  uniformly  from  O  along 

OA,  then  the  point  P  will  describe  the  spiral  of  Archi- 
medes. 

♦  Beman  and  Smith's  translation  of  Klein's  Famous  Problems  of  Elemen- 
tary Geometry,  p.  57. 
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